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Preface

The teaching of mathematical modelling and applications is here. For
more then 20 years, groups involved in mathematics education all
over the world have initiated, supported, and directed the inclusion
of modelling and applications into the curriculum at all levels. Writing
groups, on an international basis, have prepared materials which use
actual applications of mathematics as a catalyst for educational reform.
The power of modelling has enabled educators to focus on real-world
problems and the development of responsible citizenship. References
to support these statements abound in this book.

Now that a vanguard group has prepared the way, what advances
have been made and where are we heading? These questions form

and applications has introduced g need for new teaching methods and
classroom organization, but there is still a great deal to be done as new
issues are raised. For example, the role of computers in mathematics
education and the broad spectrum of mathematical topics used in
- modelling present problems educators have not yet solved completely.
Perspectives on such problems are treated in this book.

‘This volume is divided into six sections. Section A consists of
three chapters, each giving a survey of advances and perspectives in
mathematical modelling in an educational context. Section B deals
with empirical investigations involving a modelling process. Section
C looks at the important issue of assessment. Section D treats the
industrial collaboration so necessary for the procurement of realistic
problems. Section E deals with primary and secondary examples
and, finally, section F with tertiary examples.

The chapters in this book represent the proceedings of the 6th
International Conference on the Teaching of Mathematical Modelling
and Applications, ICTMA-6, held at the University of Delaware, USA,
in August 1993. This was one in a series of biennial international
conferences concerned with the teaching of modelling and applications,
The first two conferences were held in Exeter, UK (in 1983 and 1985),
the third in Kassel, Germany (1987), the fourth in Roskilde, Denmark
(1989), and the fifth in Utrecht, The Netherlands (1991). The next
conference, ICTMA-7, will take place in July 1995 in Jordantown,
Northern Ireland (UK). ‘
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Applications and Modelling
in Mathematics Teaching
and Mathematics Education
— Some Important Aspects
of Practice and of Research

Werner Blum
Kassel University, Germany

SUMMARY

This paper will address some essential questions concerning the theory
and practice of mathematical modelling and applications in learning
and teaching mathematics at the secondary and tertiary levels. It
will consist of six parts. In part 1, basic notions will be clarified by
means of an example. Part 2 will review briefly essential arguments for
the inclusion of applications and modelling in mathematics teaching at
schools and universities. Part 3 will describe the role of applications and
modelling in present mathematics curricula and in everyday teaching
practice, including some difficulties and obstacles. In part 4, selected
recent resources and materials for teaching mathematical modelling and
applications will be referenced. Part 5 will analyse the opportunities
and risks of using computers in this context. In part 6, general
measures for overcoming the aforementioned difficulties and obstacles
will be suggested, as well as a research programme for applications and
modelling in learning and teaching mathematics. '
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1. WHAT DOES APPLICATIONS AND MODELLING
MEAN? EXAMPLES AND NOTIONS

In the literature, there are a lot of different definitions of terms such
as ‘application’ or ‘modelling’. Therefore it is reasonable to start with
defining briefly and pragmatically my terminology. I will do this with
the aid of an example (in two parts) which I shall refer to several times
later on. This example is not new though some features of the following
presentation may be so; compare with Winter (1975) and Burghes,
Huntley and McDonald (1982). It is not meant to be ‘representative’ in
any sense; it is simply an appropriate case for my didactical intentions.
Of course, I can only outline the essential steps.

EXAMPLE: TRAFFIC FLOW

Part 1: Traffic lights

Situation: A road junction with traffic lights.

Problem: How to install and control traffic lights so that the traffic
streams as Aluidly and as safely as possible?

Structurisation: We decide on 9 lights according to the 9 streams of

AR

=

@G

Fig. 1

Question: Which streams are compatible with one another?
Mathematisation: Compatibility graph as a mathematical model.
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Fig. 2

Mathematical problem: Find sets of maximally complete subgraphs
with each vertex occurring at least once.
Solution: For instance

{(7,8,9),(1,6,8),(1,2,3),(3,4,5)}.

Interpretation: Control the lights according to this set, in the given
order of phases.

Is this solution to the original problem “optimal” with respect to our
intentions? So we had better find more or even all solutions and
compare these.

Refinement: We assign times to the individual light phases, dependent
on the amount of traffic and on political intentions.

Part 2: Traffic flow rate

Situation: A single-lane road with dense motor traffic.
Problem: At what speed should cars go in order to maximise flow rate?

Simplification: - All cars at same constant speed (v)
- All cars of same length (1)
- Same distance (d) between cars

We imagine a fixed registering point and define ﬁow rate (F) as the
number of cars per time at this point.

Mathematisation: Formula F' = ?—f%i as a mathematical model .

d depends on v : d = g{v). Let v =< v >, where < v > indicates
the speed reading in km/hr.

Model 1: Half-speed rule: d = <gZm = g;(v)

- Model 2: 1.5-second rule: d =v-1.5sec. = ga(v)
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Fig. 3

Model 3: Driving-school rule: d — (3 -S> (sp= )2) m = g3(v)
Model 4: Stopping-distance rule: d — v-tp + 515'02 = ga(v) -
Model 5: Front-man rule: d=wv-tp+ % (-al—o 1 ) ve = g5(v)

_E;

It would be interesting in itself to analyse and compare these rules since
most people have fatal misconceptions about stopping distances. I will
merely state that models 1 and 2 are (unrealistic) cases of 5 and model
3 is a special case of 4 and of 5.

Flow rate models: f;(v) = m‘:}m (v>0)
Mathematical problem: Maximise f;

T

Fig. 4

In the case of fa, for example, a rough inspection is sufficient for oyr
purposes since the maximum is rather flat. For reasonable values of
the parameters we get

v =2 30 km /hr.

Interpretation: Maximal flow rate according to model 4 if v 30km /hr.

That’s remarkably low, so passionate motorists won'’t like the result. If
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we compare with f; for reasonable values we get
v &2 50km/hr.

Again that’s quite low. However, because of the very flat maximum
it doesn’t really matter if cars drive a bit faster, and that might
even be better ecologically (provided it’s a motor-only road, such as
a motorway).

A further mathematical analysis will use differential calculus to

determine maxima and yield for model 3, 4, 5 vopy = v/2al, that means
braking distance equals car length if v = vops.

Refinement: We consider varying car lengths or reaction times.

Apparently, both parts of the example are structured according to
the well-known simple model of applied mathematical problem-solving:
From a real situation to a real model, then — if possible — to a
mathematical model, to mathematical results and then back to the
situation. At this point the model is also validated. If discrepancies
occur then the whole cycle may start again, or the problem solver may
leave it at that, in accordance with JM Keynes’ well-known aphorism
“It is better to be roughly right than precisely wrong.” '

Actually, these features fit in only with ‘really real’ situationms.
Sometimes - especially in school mathematics — the given situation is

just a dressing up of some purely mathematical problem. Then model-

building means merely undressing, and the process stops after one cycle

only. Nevertheless, such word problems — and all kinds of problems in

between totally authentic and totally artificial — may quite well be of

didactical value and are also included in what follows.

Now to my terminology. A real-world situation can be called an
application, and any connection between mathematics and reality can
be denoted an application of mathematics. The term (mathematical)
modelling may mean the process of model building, leading from a
real situation to a mathematical model, or the whole applied problem-
solving process, or sometimes any manner of connecting the real world
with mathematics. In this paper, modelling means applied problem-
.solving. As an all-comprising expression for these various meanings,
concerning both objects and processes, I will use the composite term
applications and modelling (abbreviated to A&M; compare also Blum
and Niss, 1991).

Much more about the status and the nature of interrelations between
mathematics and the real world can be found in the vast literature on
that topic, for example in recent books such as Huntley and James
(1990), Murthy, Page and Rodin (1990) or Giordano and Weir (1993),
and particularly in the proceedings of the ICTMA conferences: Berry
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et al. (1984), Berry et al. (1986, 87), Blum et al. (1989a), Niss et al.
(1991), deLange et al. (1993), and of the applications and modelling
parts of the ICME conferences: Blum et al. (1989b), Breiteig et al.
(1993).

2. WHAT IS THE USE OF APPLICATIONS AND
MODELLING IN MATHEMATICS TEACHING?
ARGUMENTS AND AIMS

In the last 15 years, there has been a world-wide trend towards A&M
in mathematics education (see, for example, Blum and Niss, 1991).
Exemplary documents are the two books by NCTM (1989, 1991)
which contain real-world problem-solving and extra-mathematical
connections as essential components in all parts.

This is an encouraging development, so there is no need to advertise
for A&M. However, in the educational debate, occasionally only single
arguments are put forward. That is why it is even possible to identify
certain schools of thought within the maths education community
according to the aims and arguments placed in the foreground (cf.
Kaiser-Messmer, 1991). Yet, the intended aims are closely linked
with didactical principles and thus have implications for method and
organisation of teaching as well. Therefore it does make sense to
summarise, once again, the essential reasons for favouring A&M and
to hint at instructional implications. In an international perspective
I see four arguments, mainly based on general aims for mathematics
education (see Blum, 1991).

Pragmatic arguments Mazths instruction is intended to help stu-
dents to understand and to cope with real-world situations and
problems and to prepare them for their future lives as respomnsible
citizens or competent workers in a democratic society of the next
century. To that end, suitable applicational examples are indispensable.

Formative arguments By being concerned with mathematics,
students should — we hope — acquire general qualifications such as the
ability to communicate or cooperate with other people, and general
attitudes such as willingness to enter into new situations. Involving
students actively in A&M problems is one possible way to develop these,

Cultural arguments Students should be taught mathematical top-
ics as a source for reflection and in order to generate as comprehensive
and balanced & picture of mathematics as possible, as a science and as
a part of human culture. Linking mathematics to reality, using {or mis-
using) mathematics, has always been crucial for the history, philosophy
and social practice of mathematics. Thus, dealing with applications in
the classroom, especially with genuine modelling examples of a more
global kind, can contribute towards those aims. This should also com-
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prise critically judging and discussing models, as well as letting students
gain insight into the peculiar phenomenon that our society is increas-
ingly mathematised but mathematics becomes more and more hidden,
especially by new technologies (see Keitel, 1993). This will help stu-
dents to develop higher-order knowledge, ‘reflective knowledge’ in the
sense of Skovsmose (1989). The traffic problems, for example, can show
how mathematical models are implicitly inherent in daily life through
traffic control regulations, or can lead to discussions about the validity
and limitations of models.

Psychological arguments Among many other things, applications
may contribute toward longer retention of mathematical topics,
or change students’ attitudes toward maths. In particular, real-
world interpretations can support the understanding of mathematical
concepts and the formation of basic ideas (such as derivative as
rate of change), as well as supply suitable contexts for reasoning
mathematically on a non-formal but absolutely rigorous level (for
instance, determining monotonicity and maxima in the traffic flow rate
problem without using derivatives).

A more general argument is the following. Students often experience
mathematics as a mechanical manipulating of meaningless symbols.
At best they acquire — philosophically speaking — some dispositional
knowledge. A&M is one way to make the learning and teaching
of mathematics more meaningful and to supply students with
orientational knowledge as well.

All arguments are relevant for all kinds of maths teaching at all levels
(secondary and tertiary, general and vocational), though with different
emphases for different educational histories (see Blum, 1991). Of
course, A&M is only one component in the complex field of learning and
teaching mathematics. Stressing this component too much also leads
to a reductionistic picture of maths. I think that after the eighties,
when A&M was emphasized quite a lot in the didactics of mathematics
all over the world (some people even spoke of a fashion wave), we
are now in a phase where we are becoming better aware of the place
of A&M in that field, where hardly any new specific perspectives.are
coming into play, where the debate is tending toward a consensus, and
issues other than A&M are coming to the fore (for instance, the social
dimension of mathematics or the role of computers). This is absolutely
right. Nevertheless, there is a certain danger if A&M is no longer a
central topic in the educational debate. For, it is then possible that
the efforts to improve the actual situation with respect to A&M might
also decrease. Yet such efforts are still necessary, there is still a lot to
do, especially in teaching practice.
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WHAT IS THE ROLE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA
AND EVERYDAY TEACHING PRACTICE?
TENDENCIES AND DIFFICULTIES

Globally speaking, there has been a world-wide trend in the last decade
towards including more A&M components into mathematics syllabi and
textbooks. Some present-day secondary school curricula, especially
from the Netherlands and from Australia, have included compulsory

A&M

components throughout.

The actual implementation, however, has not been uniform. There are
considerable variations, with respect to ’

the aims aspired to, )

the mathematical tdpics with A&M content,

the extra-mathematical areas that examples are taken from,
the proportion of intra- and extra-mathematical contents,

the conception for the combination of mathematical and
applicational components,

the scope and kind of examples,

the expected activities of students.

In recent years, the curricular developments in various countries seem

to be

heading in the right direction; there are trends towards
broadening the spectrum of aims,

broadening the range of applied mathematical topics  (for
example, including more probability and statistics, more discrete
mathematics, and new topics such as chaos or fractals),

broadening the range of applications (examples from economics,
eco)logy, sports or arts in addition to classical physics or everyday
life),

increasing the proportion of extra-mathematical topics,

connecting mathematical and applicational components more
strongly, ' :

including more real examples and emphasising the processes of
translating between the real world and mathematics instead of
working with ready-made models only,
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- involving students more actively.

In everyday teaching practice, the amount of A&M is also increasing.
. Standard models especially have entered the classroom and are treated
to a moderate extent. However, the mainstream of mathematics
instruction is still far behind the forefront of research and development
in mathematics education. Apart from some model countries or
innovative projects, applications, and even more so modelling, still
play only a modest role in school and university classrooms. Formal
calculations or intra-mathematical considerations are still at the heart *
of mathematics teaching. Why is the situation like this?

I think this is due to some actual obstacles. These have been well-known
for a long time and quoted time and again (see Pollak, 1979, Niss, 1987
- or Blum and Niss, 1991), but they still exist. I will summarise four of
them.

Obstacles with regard to the organisation of instruction. Among
other things, the usual school or university organisation interferes with
the teaching of authentic, open-ended problems; for some problems —
such as the traffic example — the students ought to go outside to make
their own observations. The abilities connected with A&M are difficult
to assess, and what is not actually and regularly examined will not be
taken seriously enough by students or by teachers.

Obstacles from the learner’s point of view. A&M work makes
mathematics learning more demanding and less predictable. Modelling,
in particular, requires imagination and creativity as well as solid
knowledge of standard topics.

Obstacles from the teacher’s point of view. A&M work also makes
teaching more demanding; among other things, additional time and
effort is required to find suitable examples and to get these ready for
particular groups of students. Teaching also becomes less. predictable,
because unusual types of classroom interaction may occur, for example
discussions about environmental problems in the case of traffic flow,
or evaluation questions such as “Which of the distance models is the
best, and why?” Teachers might doubt whether this belongs to maths
lessons at all, and might feel their expert authority undermined, which
in some cultural environments is a really severe problem.

Obstacles with regard to materials. The amount of materials avail-
able is not a real obstacle (see part 4 of this paper). However,
many existing examples and materials are not integrated into regular
curricula, and many have a strong cultural, local or regional touch.
In which parts of the world is the case of maximum traffic flow, for
example, really relevant? What about economic cases such as taxes, or
ecological and social cases such as energy consumption or population
growth? On the other hand, taking into account the fundamental global
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problems we are all facing, as well as the fact that politics and economy
on our planet are more and more intervowen (which necessitates global
thinking and the awareness that there is only one world) it is even more
desirable to treat not only locally-based examples.

4. WHAT MATERIALS ARE AVAILABLE FOR
- TEACHING MATHEMATICAL MODELLING AND
APPLICATIONS? EXAMPLES AND PERSPECTIVES

There is really a wealth of A&M examples and materials for every topic
area of school or university mathematics, all in principle accessible to
teachers by way of books, project materials or-articles in journals. A
lot of references can be found in the A&M surveys from the ICME
congresses: Pollak (1979}, Bell (1983), Niss (1987), Blum and Niss
(1991), Blum (1993). In the last few years, many interesting new
project materials for secondary schools have been developed, some of
them are presented in the last reference above. Here are some additional
resources.

A lot of materials has been created in various states of Australia
— see for example Finger and Treilibs (1992), and the references in
Carr (1993) and in Money (1993). Authentic applications have been
prepared for the classroom in Denmark - see the contribution of
Ebbensgaard in this volume. In Germany, many detailed teaching
units have been developed by the project MUED (Mathematik-
Unterrichtseinheiten-Datei), for example Bder (1983). The Freudenthal
Institute at Utrecht University (de Lange et al.) in the Netherlands
has produced lots of materials, including textbooks. In Portugal,
there are initiatives aiming at integrating mathematics with real-world
situations in the lower secondary level, including project work — see,
for example, the description of the MAT 789 project by Abrantes
(1993). In the UK, numerous books and pupils’ materials have
been produced by the CIMT (Centre for Innovation in Mathematics -
Teaching) at Exeter University (Burghes et al.) and by the Shell Centre
for Mathematical Education at Nottingham University (Burkhardt et
al.), both structured according to problems, not to mathematics; the
ongoing Nuffield Advanced Mathematics Project (Neill, Burns ef al.)
also contains a strong modelling component including case studies,
and the new Welsh project Practical Applications of Mathematics is
presented by Tanner and Jones in this volume. Last but not least,
several useful books have been produced by USA projects, among
others by COMAP (especially the series of HIMAP Modules, 1985-
93, for the secondary level and UMAP Modules, 1981-93, for upper
secondary and tertiary levels), by UCSMP (the University of Chicago
School Mathematics Project, directed by Usiskin), by NCTM, by
CORD (the Centre for Occupational Research and Development, 1988-
93, with examples from professional and everyday life for the lower
secondary level), and by Sloyer et al. at the University of Delaware,
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in collaboration with Tri-Analytics (see, for example, Sacco et al.
1987/88).

Many more references to the literature in German, English and French
can be found in the extensive bibliography by Kaiser-Messmer, Blum
and Schober (1982-1992) and, of course, there are lots of other
interesting activities in those and other countries and language areas
as well that I could not present here or that I don’t know about. I
apologise for any omissions. '

Nevertheless, the small selection of materials and activities mentioned
above demonstrates several promising directions of development:

- case collections for new A&M - oriented mathematics curricula,
including assessment, in Australia,

- authentic examples of mathematical modelling in Denmark,

- application-oriented teaching units in addition to conventional
mathematics textbooks in Germany,

- application-oriented mathematics curricula on a global scale and
suitable textbooks in the Netherlands,

- subject-integrated materials in Portugal,

- examples of activity-oriented global problem sequences in
England,

- materials for a new direction of mathematics curricula in the
computer age in the USA.

E}ie last-mentioned aspect deserves a special discussion and is detailed
elow.

5. WHAT IS THE EFFECT OF COMPUTERS IN
TEACHING MATHEMATICAL MODELLING AND
APPLICATIONS? OPPORTUNITIES AND RISKS

We can clearly see an international trend towards an extended use
of computers in mathematics teaching. The opportunities offered
by computers are rapidly increasing, and there is indeed no doubt
that they can effectively improve mathematics learning and teaching,
amongst other things by making it possible to deal with more complex
applications, by way of simulation, or by relieving learning and teaching
of some tedious activities and thus making it possible to concentrate on
higher-level aims such as modelling. One example from our experiences
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is using DERIVE in the case of traffic flow rate in grade 11 for trying
and comparing diverse distance models, varying parameters, drawing
qualitative conclusions, analytically calculating the optimum, and so
on. :

New possibilities like these are well-known and quite often quoted
today. What is less often quoted is that the use of computers is
accompanied by certain problems and risks, also with respect to A&M.
For example, superficial learning may be advanced, and the necessary
intellectual efforts of students may be replaced by mere button pressing
— see the list in Blum and Niss (1991). These risks are still acute today.
Presumably, some have not become visible in public yet because the use
of computers in mathematics teaching and its curricular implications
are not yet put into effect on a broad enough scale. From our
experiences, I can add some more problems.

- The instructional possibilities of computers may be over
estimated, for instance concerning difference and differential
equations and their applications. Overestimating computers
and computer mathematics may result in overly devaluating
‘traditional’ topics and skills which are still indispensable or,
in some cases, perhaps even more important than before.
An example is given by the false dichotomy ‘continuous vs.
discrete mathematics’, another is a rash'elimination of some
basic algorithms which, among other things, are necessary to
understand and to judge results delivered by the computer.

- Present software is by no means didactically perfected yet. On
the one hand, most professional software is, in a way, too
powerful for teaching and learning purposes. On.the other
hand, most available software requires an excessively great deal
of formal effort for solving some standard problems so that, for
example, students won’t be able to make 1lluminating discoveries
by themselves - such as braking distance equals car length in the
case of optimal speed in the traffic problem.

Why do I mention all this? Not in order to prevent, in a small-minded
way, anybody from using computers. On the contrary, I am convinced
- like many other people — that computers may considerably improve
mathematics teaching and that mathematics curricula should be altered
today to meet the dynamically changing demands of tomorrow. I
mention these frequently neglected problems for two reasons. First,
teachers and students should become fully aware of these problems.
This, of course, does not solve them, but it will contribute towards
a more reasonable use of computers and towards developing meta-
knowledge of mathematics and its tools. Second, the problems point
to certain open research questions. Some of these — such as the one
.on the relative importance of elementary algorithms — have actually
been relevant for a long time, but now computers bring these questions




Ch. 1] Applications and Modelling 13

inexorably into light. What we need in particular are more long-
term empirical investigations to explore the actual effects of the use
of computers in teaching.

A final remark. I am more convinced than ever that — because of simple
logistic difficulties — present day personal computers will not really
affect maths teaching in the future but only cheap and permanently
available ‘pocket computers’.

6. WHAT NEEDS TO BE DONE FOR APPLICATIONS
AND MODELLING IN PRACTICE AND IN
RESEARCH? MEASURES AND QUESTIONS

There is already a lot being done to overcome those difficulties
and to induce changes in the school or university classroom in
desirable directions, as indicated in part 3. Therefore we can
certainly speak of a trend towards reducing the gap between what
Is intended in mathematics education and what is achieved in
mathematics teaching, though with considerable differences between
various countries. Nevertheless, many of those difficulties are, in my
view, unavoidable and cannot be ‘methodised away’ in an easy manner.
They have to be taken into account explicitly by teachers and learners
and, again, they call for more research and development.

What should be done? I see at least the following practical measures.

1) Developing appropriate modes of assessment for A&M.
‘Appropriate’ means, generally speaking, that such modes have
both to reflect the nature and spirit of A&M and to comply
with the usual needs of formalised testing. For most educational
systems, these are conflicting demands. T am not sure whether it
is possible at all to assess all important aspects in a reasonable
way, nor am I sure whether this is desirable. Concerning these

~and "other fundamental questions of assessing. mathematical
A&M, I refer to Niss (1993c).

During the last few years, the topic of assessment has become
more and more important in mathematics education in many
countries. We can even see a trend towards conceiving new
modes of assessment, especially with respect to A&M (see also
Niss, 1992). Many very interesting contributions, both to theory
and to practice, are contained in the two ICMI studies Niss
51993a,b). For the topic of A&M, the materials and experiences
both good and bad) from the Netherlands, from Australia, from
England and from Denmark seem to be particularly valuable —
for example see de Lange (1993), Money and Stephens {(1993) as
well as the contributions of Galbraith and of Haines and Izard
in this volume. ' |
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2) Initiating all kinds of in-service and pre-service teacher
education 'activities in order to supply as many teachers
as possible with knowledge, abilities and, in particular, with
attitudes to cope with the demands of teaching A&M. All aims
that students are to achieve have to be achieved by teachers
themselves. Especially important, in my view, are local or
regional in-service courses where teachers teach teachers.

3} Encouraging teachers to organise themselves. One very
promising example is the German group MUED mentioned in
part 4. Founded in 1977, it consists at present of more than
500 members, mostly teachers.from all types of school. A
description of the philosophy of MUED is given by Ber and
Meyer-Lerch (1989). The group has developed up to now more
than 500 teaching units, several of which are available from a
commercial publisher. This third point is one facet of a general
and vitally important issue: recognising and advancing teachers’
professionalism.

4) Developing new A&M materials which are or can easily
be embedded in regular curricula and which meet certain
requirements of educational quality, and developing new
textbooks and curricula with A&M as an essential component.
This has to be done in each country separately, but of course
profit can be gained from materials and experiences from other
countries, too, especially since there are common principles of
curriculum construction (compare Usiskin, 1989 and 1991), one
important being the need for structure.

I have called these measures practical. However, several of these belong
to research as well. For, in my view, the term research also includes
developmental work guided by theory or systematic reflections upon
fundamental issues. I have addressed research questions in various
other parts of this paper, too. I think it is time and highly desirable
to intensify research activities in the field of A&M in learning and
teaching mathematics (see also Ponte, 1994). T will close by giving
a list of possible research aspects — a research programme. I do not
claim that these aspects are new or complete nor that there have
not already been many contributions to individual aspects. What I
would like is for research work related to aspects neglected so far to be
intensified and, in particular, for a coherent view of these multifarious
aspects to be considered in all individual research activities. Almost
all the following questions have to be answered in relation to specific
educational situations (age, ability level and so on).

Fundamental and Curricular Aspects

- What are the aims of A&M in maths teaching, and what is
their relative importance? How is A&M interrelated with other
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- aspects of maths education?

- What are suitable cognitive models related to learning
mathematics in applicational contexts, and what should the
essential abilities of students be?

- What are suitable concepts and cognitions related to teaching
mathematics in applicational contexts, and what should the
essential abilities of teachers be?

- What are appropriate kinds of examples? How can these
be prepared for the classroom? And: Developing examples,
teaching units and projects for certain purposes.

- What are appropriate conceptions for combining mathematical
and applicational components in' the curriculum? And:
Developing curricula for certain purposes. :

- What are appropriate modes of assessing A&M skills and
abilities? And: Developing assessment schemes for certain
purposes.

- What are appropriate modes of evaluating A&M materials and
programmes? And: Developing evaluation schemes for certain
purposes.

- What are appropriate media for teaching A&M, how can they
be used, what are their implications? And: Developing ideas for
using media (especially computers) for certain purposes.

Empirical Aspects

- What are individual students actually capable of?
Assessing student’s attitudes, skills, abilities and difficulties
in connection with certain A&M materials or programmes
(including media) and in relation to certain learning models,
and comparing different individuals or groups, also on an
international level (in small-scale case studies or large-scale
statistical investigations). '

- What are individual teachers actually capable of? _
Assessing teachers’ attitudes, capabilities and difficulties in
A&M contexts.

- What actually goes on in the classroom? :
Observing and analysing teaching, learning, communication and
interaction processes in lessons with A&M work. :

- What are the actual effects of given materials?
Eva.luatin_g and comparing A&M materials, programmes and




16 Surveys [Sec. A

assessment schemes.
Epistemological and Philosophical Aspects

- What could ‘real world’ mean, and what are (models for) its
relations to ‘mathematics’?
What is a ‘real situation’ or a ‘real problem’? What could
terms such as ‘application’, ‘model’ or ‘modelling’ mean in such
a framework?
In particular, is it possible to find answers to these questions by
theories borrowed from other sciences? :
How have these concepts developed in the past?

- What kinds of models exist? .
How does the status of a model depend on the mathematical
topic areas and the extra-mathematical fields related to it?
What was and what is the social use of models and modelling?

- What are the basic philosophical positions of various conceptions
for application-oriented mathematics instruction and education?
How have these conceptions developed in the past?

All these questions are related to A&M. However, they cannot be
answered without referring to more general issues. For instance, the
question of aims and conceptions for A&M depends on the general aims
of education and especially on the underlying conception of human
nature. Determining students’ abilities or difficulties with A&M is not
possible without using (unconsciously perhaps) some theory of learning.
Asking for the concepts of ‘application’ and ‘modelling’ depends heavily
on a conception of ‘mathematics’. More than that, these general
issues, too, are interrelated (as usual in pedagogy and education — see
Freudenthal, 1983). They all rest (to adapt Thom, 1973), whether one
wishes it or not, on a philosophy of mathematics education. The extent
to which such fundamental issues are developed is an essentia) indicator
of how far mathematics education, the didactics of mathematics, has
progressed as a scientific discipline.
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Modelling, Teaching, Reflecting —
What I Have Learned

Peter Galbraith
The University of Queensland, Australio

1. INTRODUCTION

Interest in the teaching of mathematical modelling and applications
had its genesis through the efforts of innovative individuals and
groups, motivated by beliefs about the importance of doing life-
related mathematics. A development can be discerned, over a period
of a decade or more, that has broadened the scope of modelling
and applications from an essentially classroom-based interest to one
that extends beyond content and learning situations to involve also
conceptions of institutional learning, social implications, and political
issues. This broadening scope is exemplified within the contents
published as proceedings from ICTMA-5 (de Lange, Keitel, Huntley,
Niss 1993). In this volume, for example, de Lange discusses modelling
in relation to changing goals of Mathematics Education, Keitel
relates applications to environmental issues, social responsibilities,
and interdisciplinary learning, Julie indicates how modelling can
promote an emancipatory role for mathematics through addressing
social problems with political content, and Niss addresses the tensions
generated when official assessment requirements compromise the
integrity of creative initiatives in the teaching of modelling and
applications. Ormell reminds us that mathematical modelling is
a. ‘priceless dis¢ipline’ and, in reviewing the relevance of a variety
of pedagogical approaches, emphasizes again the need for a higher
synthesis promoting not only enhanced classroom expertise but learners
empowered for life.
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In parallel with these broadening emphases evident among the ICTMA
papers, the System Dynamics community has been engaged in
developments to introduce systems thinking and modelling to curricula
at all levels (Richmond, 1993; Draper, 1993; Davidsen, Bjurklo and
Wikstrom, 1993). These initiatives also aim at the development of
‘modelling pedagogy (causal loop modelling), learner empowerment,
and the use of models and the modelling process to address issues with
-social and political content.

Tt can be noted then, that reflecting upon the teaching of ma.themaﬁcal
modelling and applications requires that the reflection includes, but is
not limited to, events in tertiary classrooms and schools.

More specifically Blum and Niss (1991) in a state of the art review,
listed five arguments on behalf of mathematics that have formed
the basis for including applications, and more recently modelling, in
curricula. These are respectively:

(a) Formative argument — the.role of modelling and applications in
developing general competencies and attitudes in students.

(b) Critical competence argument - preparing students to
be perceptive and competent members of an increasingly
mathematized society. : -

(c) Utility argument — preparing students to use mathematics in
problem solving, on the assumption that this ability does not
necessarily follow from training in pure mathematics.

. {d) Picture of mathematics argument — applications and modelling
are needed to round out a proper cultural experience in
mathematics. ‘ :

(¢) Promoting mathematics learning argument — applications and
modelling act as motivating influences for mathematical study,
and contribute to the content of relevant mathematics learning.

Whether on the basis of one or all of these arguments the challenge to
incorporate applications and modelling in the mathematical experience
of students retains pre-eminence as an issue from primary through
tertiary education.

2. CONTEXTUALIZING MODELLING IN EDUCATION

Tt is taken as axiomatic that a modelling problem can be addressed
at various levels. For example, modelling situations can be highly
structured, or presented as problems to be formulated and resolved
in a totally open manner. In the former case the problem formulation
is substantially provided, and emphasis in student work focuses on
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solution and interpretation. In the latter case a full range of modelling
skills is required, in particular the ability to formulate an initial model.
In order to develop confidence and competence, and for applications
and modelling to fulfill purposes such as those listed above, it is
argued that students need experience across the range of emphases.
It is by no means clear, however, that there is sufficient agreement,
among modelling practitioners to convey unambiguous messages to
those taking first tentative steps. If the gap between the perceived
requirements of modelling and existing practice is too great, potential
innovators find the prospect too daunting. It seems essential to provide
graded support from a familiar base.

One classification that has proved useful in assisting teachers to develop
modelling expertise from a starting point of standard applications is
illustrated below. Three levels of “modelling” are identified

A generalized applications
B structured modelling
open modelling

T

3. GENERALIZED APPLICATIONS

The starting point is a standard application of the type found in'large
numbers in conventional text materials. :

Example

A person in a boat B is 3km from the nearest point 0 of a straight
beach. The destination D is 6 km along the beach from 0.

(i) If (s)he can row at 4 km/h and walk at 5 km/h, towards what
‘point on the beach should (s)he row to reach the destination in
the least time? : ’

(ii) Solve the problem if the rowing speed is changed to 43 km/h.

This is a standard application of differentis] calculus (see Fig. 1).
Suppose the person rows in a straight line from B to C; and then
walks from C to D. Let the point C' be z kilometers from O where
0<z<86.

(i) Denoting the total time of travel by T'(z) hours gives

2 -
vzt +9 M,Osmsﬁ

T(z) = 1 + E

T'(z) = 0 gives z = 4 for the minimum time.
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Fig. 1

(i) T(z) = 3vVa® + 9+ &2,0<z <6

T'(z) = 0 gives = 6.2 which is beyond the domain of T.
Since T defines a decreasing function the minimum occurs at
the endpoint of the domain, i.e. £ = 6. The person should row
directly to D, and this is the end of the solution to the problem
as set.

Introducing a Modelling Aspect

A slight change in rowing speed (from 4 km/h to 4% km/h) has
altered the solution dramatically. Mathematically the change is from a
stationary point'minimum to an end point minimum-physically from a
rowing plus walking solution to a rowing only solution.

Viewing these as two special cases of a more general situation enables
the modelling of a higher level problem, i.e. to find when a solution
will fall into one or the other of the above classes. Since the change in

the nature of the solution was produced by a change in speed, we shall B

allow the speeds to be the variable parameters, r and w, say. Then the
time function is given by

) 6 —
T(z) = ‘”T+9+ Z 0<z<6

9r?

T'(z) = 0-then gives 22 =
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For a rowing plus walking solution we need O <o = ¢

It is easily checked that this condition is satisfied for the speeds in
part (i) of the application but not for the speeds in part (ii). Further
generalizations are possible, e.g. replacing the distances OB and OD
by generalized values, a and b, enables the upper bound in the above
inequality to be expressed in parametric terms.

Thus the problem can be explored, not just in terms of particular
calculations, but as an investigation of factors that determine the
nature of the outcome — a generalized model. The initial data have
been viewed, not as ends in themselves, but as special cases underlying
a more general principle. :

Insights for Modelling _ .

One person viewing the original question may see only a single
application achieved by manipulating specific arithmetic values.
However, a modeller conceptualizes a whole family of solutions of which
the given context provides but one. In generalizing given constants
“to variable parameters the modelling potential in a situation can be
developed. In following this path it is necessary to make decisions such
as the following.

e Which constants to “parametrize”?

e What physical limits to place on the values that can be assigned
to the parameters? . -

e What mathematical results follow from the generalized
approach?

e How are these results interpreted in terms of decision making
for the contexts being explored?

e What further generalizations are useful?

Answering these questions involves chodsing variables, making
assumptions, solving mathematics, interpreting results and evaluating
implications — all recognisable components of mathematical modelling.

In the sense that we began from a standard application, a modelling
pedagogy can be derived for such situations — based initially on the
‘parameterization” of given constants. To the extent that this approach
has an identifiable starting point and a common structure it can prove
helpful in the development of modelling skills — as a learnable and
teachable approach. Further, there is no shortage of examples from
which to begin. '
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4. STRUCTURED MODELLING

Here general contexts found in reality are considered. However to assist

. the students,.organising statements are provided to chart them through

essential aspects of the process

Example

- Explain the design of the cardboard core used in toilet rolls and paper

towels. Design a core whose circumference and height are to be twice
those of your own sample.

A structured modelling approach might be provided as follows — the
diagram shows the plan of an opened-out core (see Fig. 2).

Fig. 2

(1) Unwind the roll to form a plane figure — identify and measure
equal edges.

(2) Find lengths that are equal to the circumference of the roll.
(3) Calculate the area of the whole parallelogram (AFDC)

(4) Find other values for { and 0 that will form a core of the same
radius and helght

(5) What are the smallest and largest possible values for 87 What
guides the choice of 67

(6) Design a core whose circumference and height are to be twice
those of your sample.
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Approach to Solution

The core consists of two congruent parallelograms, ABEF and GHCD
gummed together to overlap such that HBEG is a double thickness
and BCDE, AHGF are single thicknesses. AB = 2ar and BC = #r
where r, h are respectively the radius and height of the core. BCDE
wraps onto AHGF forming a cylinder of double strength — it can be
verified that CD and HG coincide to form an equi-angular spiral on
the surface of the cylinder. All lines (like CK) that are parallel to the
vertical height cut these edges at a constant angle. Given r and b and
the foot of the perpendicular K, the parallelogram is constructed by
calculating ! and @ where

I = DK® + KC* = (2rr — KG)? + h® and h = Isin6

For an actual core with r = 2,h =10, GK = 1.5 we get [ =17.25 and
@ = 35° (approx).

Using the constant area locus a variety of values of [ and # can be
found for a given radius and perpendicular height. These correspond
to diﬂ:'erent positions of K. Maximum (§ = 90°) and minimum
(tand = ) values for @ can be found and related to the design and
strength of the core. Requiring the design of a core with twice the
dimensions is one way of assessing that the mathematical principles
have been understood and can be applied. When a modelling situation
is structured for students, the application of the inherent principles to
a variation of the problem may be an essential element in assessing
modelling competence.

5. OPEN MODELLING

Here students are asked to make progress with problems based on real
situations without assistance — to carve mathematics from the rock
face.

Example

The State Government is considering building a controversial major
road through the northern and inner suburbs of Brisbane.

_ Resident action groups have been very vocal in this opposition, claiming
it will have a major effect on their lifestyles. One of the options being
considered is the building of a tunnel under one of the hills in Bardon,
rather than above ground, thereby causing less disruption to residents
in the area. Owing to financial restrictions, the tunnel would probably
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have one lane in either direction. The Chief Engineer has realized. that
there will be holdups at both ends of the tunnel during the morning
and evening rush hours. :

Bearing in mind aspects of safety, and the desire to produce the
maximum flow of traffic at peak times, she wishes to put up signs
indicating a maximum speed and the distance to be maintained between
vehicles. You have been contracted to wofk on this project. What
recommendations would you make to the Chief Engineer? .

For this type of problem. a systematic and incisive approach to
modelling is required. A full range of skills from problem formulation to
solution validation or refinement needs to be developed. A discussion
of this problem is included in Clatworthy and Galbraith (1991).

‘Type A modelling is located near the application pole. It contains many
elements of creative modelling and can be sourced in terms of a variety
of applications available in curriculum materials. In basing this activity
on generalizations of existing applications, a variety of content areas
and levels can be incorporated. This type of modelling approach can be
based around generalizable mathematical and pedagogical strategies,
and assessment may be possible using variations of standard practices.

Modelling activity of this type does not address the issue of formulating

an initial model from a real situation.

Type B modelling may be more properly described as a form
of structured investigation. Both the context and model data
(measurements, etc.) are grounded in real situations and students are
led through stages that are designed to display (and teach) various
phases of modelling activity. It is not, however, obvious that this
alone would suffice to enable students to become independent - in
-particular the formulation phase of modelling is provided. The level
of mathematics incorporated in a model will be a function of the
structuring, and hence teacher controlled.

Type C modelling is the only one (of these versions) that requires
students to systematically develop skills of formulating mathematical
models from complex realities. Consequently it is an approach that
must be incorporated into a programme if the aim is to enable students
to unlock their mathematics for substantive use, as well as for satisfying
assessment requirements.

The three approaches to modelling are intended to be generic but not
definitive. They are certainly not mutually exclusive, as approach
A, for example, can be used to extend a model initially developed
using approach C. Indeed aspects of A and B can be used to assist
“students to deepen models built initially using an open approach. The
refinement stage of a basic model gives an opening to provide structured
suggestions on how the model might be improved, without interfering
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with the basic formulation that will have been accomplished within

. the basic model. Fach modelling approach has been found to make a

contribution, both with respect to mathematical achievement and with
regard to the logistics and constraints of teaching situations.

6. THE IMPORTANCE OF INFRASTRUCTURE

Mathematical knowledge is important. As Simon (1980) pointed out
“research on cognitive skills has taught us ... that there is no such
thing as expertness without knowledge”. It has been claimed at
various times and places, that the mathematical skills students can
call on for modelling purposes, lag substantially (2 years or more)
behind their pure mathematical expertise. Experience from at least
one modelling programme, Galbraith and Clatworthy (1990), suggests
that this observation needs qualification. It was certainly true at the
outset of the programme when students entering their senior years at a
secondary college could think no further than basic arithmetic Tor use
in their first attempts at models. However, by the end of the two year
course they were invoking, and successfully using, new mathematics
such as calculus and computer applications that had been learned
only weeks or months before. Furthermore, they were using the new
content in the solution of unstructured modelling (type C) problems
where the formulation was their total responsibility. What brought
about this changed capacity? Arguably it can most likely be attributed
to the development of what might be called modelling infrastructure.
This infrastructure involves the development of & systematic, strategic,
approach to the development, interpretation, and testing of models.

An early and widely known support for such development became
known as the Open University seven-box diagram that originated
some time ago through instructional materials developed by the Open
University (UK). Many variants of this diagram exist, such as Fig.
3, and others have devised their own preferred schemes. Fig. 4
contains partially developed infrastructure representation from the
more specialized field of System Dynamics modelling,. '
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REAL WORLD REAL/MATH LINKS MATH WORLD
1. Specify the 2. Assumptions 3. Forﬁ:ﬁulate -
real problem made in the
: model mathematical
problem
6. Validate 5. Interpret 4. Sojve the
model the solution mathematical
problem

7. Communicate:
use model
to explain,
predict,
‘decide,
design,
desist.

Fig. 3 (After: Open University, 1978)

Dynamic Thinking

Closed Loop Thinking
Other Generic Thinking
Critical Structural Thinking
Thinking - Operational Thinking
Skills Continuum Thinking
Scientific Thinking

Fig. 4: Critical Thinking Skills (after Richmond, 1993)

The significant point is not which schema we favour, but that a suitable
one exists and can be communicated and used by learners. Evidence
has accrued, both formally sought, circumstantial, and anecdotal,
that such articulated schemes foster abilities essential for effective
modelling. In one programme, Clatworthy and Galbraith (1991), it
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was not just that students reported the modelling diagram as the most
important facilitating factor more often than any other single aspect
of mathematics or pedagogy within the modelling programme. It was
also the way it provided for transfer of their modelling approach to
applications outside the mathematics subject, and outside the college
itself. For example one student elaborated carefully on his new
approach to structuring solutions to physics problems, while another
described an application to a hobby involving the growing of tomatoes
hydroponically. Reflecting on experiences and outcomes indicates that
the explicit provision of such a structure is an essential aid to the
development of modelling skills. So while the development of such
schemas may have been originally motivated by pragmatism (it seems
to help), we should now recognise their place as a theoretical construct
for the learning of modelling.

The importance of such structuring in the successful teaching and
learning of modelling strategies receives independent support from
cognitive psychology. '

Anderson (1990) has written extensively on the development of
expertise. In terms of modelling and applications his following points
are of interest (pp 256-257).

(1) Tactical learning (accomplishing a particular goal) refers to the .
improvement that comes about because people learn familiar
subsequences of problem solving steps that appear in multiple
problems. '

(2) Strategic learning refers to improvement that comes about
because people learn the optimal way to organise their problem
solving for a particular domain.

(3) Proceduralization refers to the process by which people convert .
their declarative, factual knowledge of a domain, into a more
efficient procedural representation. '

(4) Problem solving improves in a domain because people learn how
to represent problems in the domain in terms of abstract (not
surface-level) features that facilitate the problem solving.

These points refer to generic aspects of expert performance of the kind
facilitated by structures such as Figs. 3 and 4. Richmond (1993) has
referred specifically to the importance of explicit appreciation of the
modelling process, for workshop participants learning system dynamics
modelling. _

“Specifically: (1) tell people that they’'re going to be asked
to juggle multiple thinking tracks simultaneously; (2) be explicit
about what these tracks are; and (3) align the curricular




32 - Surveys . [Sec. A

progression to emphasize development of only one thinking skill
at a time.”

The common achievement in all representations is the reduction of
cognitive load, and this seems absolutely essential to the development
of successful modellers. As experience increases, the use of generic
forms can be used to further reduce cognitive load within sectors of
the modelling process. Further the modelling process itself becomes
automated. This becomes evident when students who initially make
heavy use of a modelling diagram begin to move smoothly between
phases in the modelling process without overt recourse to any form
of procedural representation. A successful modelling infra-structure
representation is the author of its own demise.

To summarise the significance of modelling infra-structure we might use
a metaphor borrowed from Vygotskian learning theory. Students who
have never undertaken modelling of real life situations have an actual
development level which is very basic as far as modelling is concerned,
even if they have well developed pure mathematical knowledge. This
advanced knowledge can support a much higher-level of modelling than

~ they typically exhibit.

The provision of modelling infra-structure through leadership from a
competent teacher using relevant pedagogy enables learning in the
zone of proximal development to take place. An increased capacity
to utilize mathematical knowledge is the outcome of this learning, a
capacity which had previously been inhibited by the absence of the
infra-structure, rather than by lack of ability or of pure mathematical
knowledge.

Apart from its role as a meta-cognitive aid, an infrastructure diagram
helps to emphasize concepts about modelling that are important in
orienting beginners. One such concept is that modelling is not a subset
of mathematics, but extends across discipline boundaries and inito the
real world. Another is the holistic nature of modelling, with its total
quality formed through inter-relationships between respective phases.
Thus a model utilizing simplified mathematics may represent a more
valid approach to a problem than a sophisticated attempt that leaves
parts of the modelling process inadequately addressed.

7. DEVELOPING AUXILIARY SKILLS

Modelling infra-structure refers to an organisational framework that
provides essential cognitive and meta-cognitive support for the
development of modelling expertise. Auxiliary skills refer to abilities
which enhance the capacity of students to learn effectively. They
include skills of effective group learning, oral reporting, and project
writing.
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Small group work features in many programmes involving the
application of mathematics to real problems. Approaches to group
learning and learning through social interaction are much influenced
by the writings of Vygotsky (1978) and of Wertsch, Minick, and Arns
(1985). Essentially the relevance for present purposes rests upon
Vygotsky’s theory that .

(1) Learning promotes development

(2) The way this occurs is explained by the concept of a zone of
prozimal development (ZPD), where

«ZPD is the distance between the actual developmental
level as determined by independent problem solving, and
the level of potential development as determined through
problem solving under adult guidance, or in collaboration
with more capable peers” (Vygotsky, 1978 : 86)

Thus the ZPD defines those functions that are in the procesé
of maturing rather than those that have already matured; “they
are the buds rather than the fruits of development.”

(3) Fundamental to learning is the transformation of an inter-
personal process into an intra-personal one. '

“Every function in the child’s cultural development
appears twice: first on the social level, and later, on the .
individual level: first between people, and then inside the
child.”

“Learning awakens a variety of internal development
processes that are able to operate only when the child
is interacting with people in his environment, and in co-
operation with his peers.”

However, while effective group learning makes a major contribution to
the development of modelling expertise, the mere presence of group
activity does not guarantee quality learning.

Tudge (1990) investigated group learning in terms of Vygotskian theory
" and inferred (from work with younger children) that peer collaboration
can have a powerful impact that is not always positive. He distinguishes
between - interaction containing an acknowledged more competent
member (e.g. téacher or recognised peer) and peer interaction where
the authority of knowledge is less evident and accepted. Tudge found
that a higher level of thinking was likely to improve partner learning if
supported by a confident manner and convincing reasoning. However
an inferior rule, confidently held, was found to induce regression
among students, whose understanding, though at a higher level, was
tentatively held. He inferred that immediate feedback is important, in
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the form of evidence external to group opinion against which group
members can test attempted explanations or solutions. A similar
phenomenon was reported by Goos (1993) in a study of senior college
students collaborating to solve unrehearsed problems in mechanics.
Once again inferior strategies, confidently argued, diverted students
from more productive avenues tentatively suggested.

This research alerts us to the proposition advanced by Tudge that a
ZPD does not just extend forward from a léarner’s present state; rather
it surrounds him or her, and regression as well ag progression is possible.
Clearly group composition and the position and status of members is
of potential significance.

Hatano and Inagaki (1992) claim that constructive interaction occurs
frequently only in certain types of groups. Such groups are
characterised by the following aspects.

(1) Being horizontal in terms of flow of information — the key here is
that challenge and elaboration occurs between perceived equals
i.e. perceived expertise is changeable.

(2) Containing three or more members — there is value in the
presence of an audience beyond two members

(a) socially — since debate will be livelier to seek support of
other parties, :

(b) cognitively — since third parties give clues for evaluating
the worth of arguments between proponents .and
opponents.

(3) Inwolving empirical confirmation — interaction is induced when
: group members debate alternatives which are falsifiable by
empirical means. Such oecurs when group activity is ‘situated’

in a specific context. :

Tor the purposes of this paper the construction/evaluation of a
mathematical model would provide such a context.

(4) Room for individual knowledge -acquisition — group problem
solving may not result in all members acquiring its product
i.e. what has been achieved collectively may not be coordinated
into a new piece of knowledge in individual heads unless it is
explicitly articulated and represented. :

In' a mathematical modelling programme the requirement that
group members provide individual reports can be used to address
this issue.

In summary Hatano and Inagaki conclude that two processes are
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involved in the effective comstruction of knowledge through group
interaction: ' ' ‘ :

(A) the individual invention of kﬁowledge stimulated by
group mofivation,

(B) the assimilation of information proposed by others during .
‘interaction, modified by individual editing.

Findings such as the above suggest that the form of the group process
used to enhance capabilities in mathematical modelling is important,
and needs to be carefully organised and monitored.

We have found it useful to reflect upon the form of group process used
in our programme, in view of the above research of which we were
unaware at the time. 4 |

(1) Groups consisted of 3 or (at most) 4 individuals.
(2) Group composition was changed for each case study.

(8) A group training exercise was provided to teach cooperative
problem solving.

(4) Groups, once formed, were autonomous and scheduled their own
meetings in addition to those provided for within normal time-
tabling. These were arranged at times and places decided by
group COnsensus.

(6) Individual members of groups were interviewed separately on
the subject of their case studies.

(6) Each individual member was responsible for their own project
report. -

(7) Each group made a video presentation to the class.

In retrospect we recognise that our emphasis was on the individual
acquisition of knowledge facilitfated by group processes. Group learning
as such was not assessed. The small group activity was supplemented
by whole group plenary sessions. These were interspersed while the
class was working on the training problems. Plenary sessions provided
the venue for the sharing and debating of ideas generated within
the groups and were conducted under the guidance of a student
chairperson. The teacher’s role was one of monitor, guide, judicious
curtailer of wild goose chases, and subtle encourager of potentially
fruitful suggestions and directions for exploration. As a participant
the teacher filled the role of *more competent other’ in the Vygotskian
sense, and endeavoured to channel the social dialogue in productive
ways.
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Other auxiliary skills involved the training of students in oral reporting
and project report writing. In both these areas opporfunities were
taken to involve staff from other disciplinary areas (English and
Drama). The extent to which effective articulation and communication
enhances learning (Rieber and Carton, 1987), makes investment
in the development of these skills an important supplement to
the modelling and group processes comprising other aspects of the
pedagogy. Furthermore it helps to emphasize that modelling involves
interdisciplinary collaboration —- all requisite wisdom is unlikely to
reside within any single head.

8. ASSESSMENT

Tt scarcely seems necessary to argue that mathematical modelling as
a constrictive activity is supported by a constructivist epistemology.
Few would insist that a model can be “given” to someone as a unique
description of an objective reality. Within mathematics education
writers such as von Glasersfeld (1987) and Wheatley (1991} have argued
the constructivist case. Schoenfeld (1985, 1987) has written extensively
from this perspective within the field of mathematical problem solving.

Modelling pedagogy, insofar as it encourages discussion, debate, and
active construction and defence of problem representations (which
involves self-regulatory meta-cognitive activity), is deeply embedded in
contextual settings. Consequently the means whereby such capabilities
are assessed should derive from the same base. Richmond (1993)
describes approaches to the measurement of educational performance
under conventional teacher-directed learning.

“Simply ask the student to re-transmit what has previously been
transmitted by the teacher. If the student can “dump” a full load
he is performing well.”

Richmond goes on to note how the conventiona) classroom does not
assume that students have much to contribute to each others’ learning.

«Otherwise they would not be arrayed in a physical arrangement
in which they face the back of each others’ heads.”

Clearly the form of assessment attached to this learning context is
inappropriate to evaluate the quality of modelling and application work.

Niss (1993) draws a nice distinction between emphases in the
agsessment process. If, he argues, the prime purpose is assessment, and
modelling and applications merely constitute a domain, then the needs
of assessment will dominate the choice of applications and models. If,
o the other hand, interest is primarily on the development of modelling
abilities, then assessment must be made to serve this end.
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It is difficult to reconcile the concept of a standardized test, or even
a standard problem, for the purpose of assessing a student’s ablhty in
modelling. Proponents would appear prepared to sacrifice validity for
some spurious notion of reliability. It is argued that a wrong assessment

“model” underlies such thinking. Rather than basing assessment
methods around the concept of a common test, the “model” for creative
mathematical activity is more properly the research dissertation, that
is evaluated qualitatively in terms of criteria and standards that are
embedded in the profession. This is particularly so when a major goal
is to cultivate the ability of students to model problems of relevance to
their own situations and which are, in consequence, particular to certain
contexts and interests. No-one believes that higher degree candidates
should be assessed against each other by requiring them to address the
same thesis topic!

Clearly much remains to be done to develop agreed criteria and
standards that can be consistently applied at a system level: The
impact of nationally accredited assessment procedures cannot be
ignored. However, accepting the imposition of positivistically based
assessment procedures, upon mathematical activities grounded in
constructivism, represents a philosophical contradiction that can never
achieve beyond second best. An abiding challenge, and one being
addressed in several countries, is the establishment, communication
and application of qualitatively based assessment criteria as measures of
modelling quality. To the extent that the teaching community is larger
and less homogeneous than the mathematical academic community, this
task of embedding standards within the profession is commensurably
greater. It must, however, be pursued relentlessly.

9. BEYOND MATHEMATICS AND PEDAGOGY

Reading accounts of classroom experlments, sharing experiences with
others, and reflecting on one s own experiences, results consistently -
in sensations of deje wvu.” Similar issues, experiences, outcomes,
and anecdotes appear in many different contexts within modelling
programmes. Some of the most vividly reported include

* (i) the exceptional quality of work performed by some students,

(ii) the degree of intensity and motivation demonstrated by students
when immersed in modelling problems,

(iii) disbelief among colieagues that students could have prodiiced,
unaided, work of the quality achieved, :

(iv) statements from at least some students that modelling had
changed their view of mathematics, if not their life.

If anything can be said to characterise “true believers”, perhaps it is
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that we have each experienced absolute awe at what can be achieved
when the motivation and creative power of students is unleashed.
An inevitable product of such realization is that certain conventions
associated ‘with mathematics and education are challenged, at least
privately.

Somne of these conventions are

(a) conventions about what constitutes appropriate and realistic
mathematics at school, college, or university,

(b) conventions of pedagogy,
(c) conventions of assessment,
(d) conventions about mathematics as a social agent,

(e) conventional expecta.tlons of student behavior and capacity to
learn,

(f) conventions associated with institutionalized learning.

The implications of these realizations may be treated piecemeal, or
we may seek to embed them coherently in a broader theoretical
framework such as provided by constructs such as structuralismn and its
radical offspring post-structuralism (Gibson, 1984 and Norris, 1982). In
summary structuralism postulates that certain basic structures govern
and explain any object of study. Central assumptions of structuralism
include that reality is expressed, not through individual structural
units, but in the relationships between them. Structures survive
through the operation of internal rules and transformations that also
constitute the origin and direction of change. One consequence is that
individuals tend to be marginalised with their actions determined by
the structure in which they are embedded.

Of particular relevance to the present discussion are relationships that
exist between key words and the objects for which they stand. At a
general level this is representative of links between signifiers and that
which is signified. Structuralism holds that the relationship between a
sign and that for which it stands is arbitrary — only convention attaches
meaning within a given structure.

‘In our domain, key terms include “mathematics”, “classroom”,

“teacher”, “school”, “assessment”, etc., and within our systems
of education well-defined relationships have meant that meanings
attached to such terms are anything but arbitrary. They have been
given meanings through the agency of the systems to which they belong,
and the individual who wishes to be different is likely to feel the full
impact of structural coercion.
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Post-structuralism seizes on the notion of arbitrariness between a
word and its meaning to deconstruct the idea of structural stability.
Pushed to its extreme, this argument denies the possibility of any
meaning at all. At a less extreme level it asserts the legitimacy of
relationships other than those holding the dominant position within a
given structure. Critical theorists use this approach to challenge aspects
of the social and economic order that they believe are inequitable and
disempowering to the vulnerable. In education, this argument holds
that existing frameworks are used to control and socialize students and

teachers into accepting certain givens that operate to the advantage of

those in positions of power. As indicated above, there are structural
forms that have come to define what it means to teach, how students
in classrooms should learn, how schools and other institutions should
operate, how mathematics should be presented, and what counts as
credible assessment. Let the individual dare to differ from accepted
norms!

*

In the teaching and learning of mathematical modelling we have
a vehicle that challenges much of this accepted structure. The
concept of modelling itself challenges traditional views concerning
mathematics teaching, within both the mathematical and the

educational communities. But beyond this, the approach taken -

within modelling and applications can challenge far more fundamental
relationships. Modelling examples that address issues of environments]
and social concern, or that specifically demonstrate disadvantage and
inequality, convey a different message from examples restricted to
problems advancing the cause of consumerism. Mathematics can
become a weapon for public and political persuasion. Further, a
challenge to accepted structure comes through the agency of modelling
pedagogy. In stepping down from the podium, in sharing uncertainty
with students, in adopting a facilitating and enquiring role, rather
than an authoritative one, the concept of the typical mathematical
pedagogue is challenged. In taking control of their own learning, in
initiating classroom learning episodes, in working intensively without
close direction, students challenge the stereotype of what a person
learning mathematics is supposed to do. In meeting at unusual times,
in leaving classes and school premises as required to gather data, the
meaning of school as a centre of institutionalized learning is challenged.

In summary it is argued that collective experiences, reported from
case studies, indicate that the teaching of mathematical modelling
and applications provides s Systematic and sustained challenge to
conventional interpretations of mathematics teaching, learning and
assessment. As such, while existing as an entity in its own right,
mathematical modelling can be viewed as a coherent part of a wider
movement for educational and social renewal. It can legitimately be
represented as a transforming political and social enterprise.
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10. MATHEMATICAL MODELLING AND GROUNDED
THEORY

Tt would be fair to assume that almost all those working in the area
of modelling and applications have been trained in the traditional
scientific paradigm. Hypothesis testing through controlled experiment
is the familiar method of advancing knowledge. A substantial amount
of experience, data, and perceptions has accrued from many case
studies in the teaching of modelling and applications. The need has
been expressed for the development of further theoretical perspectives.
As has been noted previously, modelling is a constructive activity of
considerable complexity. Decisive theoretical advances will not occur
through attempts to test hypotheses based on positivist assumptions
involving dubious cortrols and spurious outcome measures chosen for
measurement convenience. To attempt to do so is epistemologically
unsound. T :

The challenge is to synthesize existing and future information into
a theory to further enhance practice. Needed is a method of
generating and testing theory from data that is consistent with
constructivist principles that underpin its purpose and methods.
Such an approach might be developed through the Grounded Theory
procedures developed originally by Glaser and Strauss {1968) and
subsequently elaborated in works such as Strauss and Corbin (1990).
This approach derives from a phenomenological stance, and is theory
generating rather than designed to test pre-existing hypotheses. Every
type of data is useful; formal and informal, quantitative and qualitative.
Such theory is grounded and tested in practice, and may evolve either
as a codified set of propositions or as a running theoretical discussion.
Above all it is derived from working data, and knowledge gained
from naturalistic settings, not from contrived experiments. As a
-possible vehicle for theoretical advancement, its potential deserves to be
* ‘explored as we seek to take the teaching of modelling and applications
into a new phase of development. :

11. SUMMARY

So what observations result from reflecting upon developments in the
teaching of modelling and applications? Clearly, if perhaps fritely, what

has been learned is that questions and needs continue to emerge along
many fronts. '

There is a continuing need for case studies at all levels, from primary
to tertiary education. Desirably those yet to come will build upon the
knowledge and experience so far gained, thus keeping to a reasonable
minimurn the re-invention of wheels. Of particular importance will
be the dissemination of information about system wide experiments
that confront issues not experienced in programmes located within
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particular institutions.

The persistence of meta-cognitive aids such as the Open University
modelling diagram and its various offspring attests to the importance
of providing specific modelling infrastructure support to learners within
teaching programmes. Links with research findings from cognitive
psychology, as well as evidence from field testing, provide the potential
for further and more precise articulation. We need to move beyond the
pragmatic “do it because it seems to work” to a substantive theory for

_the development of modelling expertise.

Much also remains to be learned about ways to make group learning
more effective and accountable. Again, a wider literature exists into
which the modelling community could well reach for assistance to meet
this purpose. Vygotskian and neo-Vygotskian learning theory appear
highly relevant to an endeavor in which discussion and communication
play such central roles. The role of the teacher as instructor, coach,
mentor and learning participant is open for further investigation in
the variety of different contextual settings in which the teaching of
modelling and applications occurs.

The assessment issue seems destined to continue as a mafter of
importance and controversy. Rather than join the debate at thelevel of
system requirements, a need exists for an epistemological approach to
the question of validity and consistency. If modelling is a constructive
activity, the constructivist paradigm will challenge any attempt to
pretend that the ability of students can be validly assessed through
performance on common problems set at national or state levels. Do
we want our students to be good modellers, or is the purpose to achieve
on some items chosen for test purposes? This dilemma is as alive now
as it was two (or ten) years ago. Acceptance of inappropriate system
assessment methods may be a currently imposed constraint; it must

be not diminish efforts to win acceptance for alternative methods miore -

faithful to the modelling enterprise.

As a coherent activity, the effective learning, teaching, and assessing of
mathematical modelling challenges existing structures of mathematics
and education, At the mathematical level debate continues within the
academic and professional community about the inelusion of modelling
— particularly in relation to formal content that might otherwise be
covered. This of course focuses on uncomfortable questions, such as the
purpose of learning mathematics! A banking metaphor is useful here.
The conventional academic position is to provide bankable mathematics
for up to 15 or 16 years of formal education. This knowledge is
deposited but may only be accessed in particular forms, for example as
cued by examination questions. In our teacher training programme we
have found graduates unable to withdraw their “mathematical funds”
for application to reasonably simple real life situations (except at a
very basic level). More content would in no way facilitate this capacity
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which is related to a lack of ‘infra-structure”. Arguments for modelling
challenge the citadel of institutionalized mathematics.

Beyond content itself, the organisation of learning, the processes used
in teaching and assessing, and the independence” granted and expected
of students working on models, challenges many conventions associated
with classrooms and schools. The choice of contexis to provide social
critique rather than to confirm, for example, the values of consumerism
challenge accepted structures beyond the learning context.

It is difficult to envisage any aspect of mathematics education that has
the capacity to so coherently and comprehensively challenge existing
structures as does mathematical modelling. It is therefore to be
expected that opposition will be vehement and arise from many
quarters if and when. programmes in mathematical modelling begin
to assert themselves beyond “acceptable limits”. - Perhaps we have
not yet quite reached this critical point, beyond which programmes
in modelling can no longer be tolerated as aberrations but are seen
to demonstrably challenge vested interests in maintaining the status
guo. One predictable reaction is the attempt to modify programmes
(for example in scope or assessment) so as to maintain the form but
to deny the substance. As a community we may expect to increasingly
face subversive acts of this type.

Finally, the question of a substantive theory to support the teaching of
modelling and applications remains essentially unaddressed. Modelling
has a social content and occurs in naturalistic settings. Consequently
theories need to be based on naturalistic paradigms. To this end
grounded theory methodologies deserve attention as alternatives to the
hypothesis testing approaches derived from positivistic science.

As to the ultimate challenge, the final word might be left to King
Solomon ‘

“Where there is no vision, the people perish.”
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Modelling — A UK Perspective
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Sheffield Hallam University, UK

SUMMARY

This paper examines some of the major educational developments
presently confronting the education community in the United Kingdom,
and discusses them from the point of view of the teaching of
mathematical modelling. It concludes that the time is right to open -
up mathernatical modelling to other curriculum areas, and to seek to
work much more closely with colleagues in all subject areas.

1. NATIONAL INITIATIVES IN HIGHER EDUCATION

The UK higher education system traditionally has been designed for
the elite, with only a small proportion of those leaving school going on
to university-level study. Recently this has changed dramatically and,
between 1988 and 1993, the number of UK and EC students benefiting
from higher education increased by 44% — to a population approaching
1 million. In the same period the participation rate of 18-19 year olds
nearly doubled — from 15% to 28% — bringing the UK much closer to
EC and international norms.

This system of ‘mass higher education’ brings its own challenges, and so
the UK government has been funding a variety of development projects
designed to raise awareness and expertise in relevant areas. These
developments can be grouped into two main areas — those that involve
assessment (such-as projects on Learning Outcomes, Competences,
Accreditation of Prior Learning, and Work Based Learning) and those
that involve technology-based training (the use of new technologies in
the teaching and learning process). '
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ASSESSMENT

Haines and Izard (1994) remind us that work on assessment has to be
approached carefully - “...assessing the wrong thing better is of little
use...” — and Niss (1993) gave us the interesting {almost associative)
sum A , - _

WYAIWY S +WYSIWYG = WYAIWYG

-which shows that combining the everyday observation ‘What You
Assess s What You See’ with the well-known computer phrase “What
You See Is What You Get’ leads to the illuminating “What You Assess
Is What You Get’. . ' :

Learning Outcomes are the traditional subject-based outcomes that
are relevant in each individual subject area — what Izard (1994) might
call “descriptors of student behaviour” — together with a range of
personal outcomes that are often described as transferable skills and
are applicable in a wide range of subject areas (see Table 1)..

Subject-based outcomes Personal outcomes

knowledge and comprehension interpersonal skills
(teamwork/negotiation)

applying knowledge in intrapersonal skills

different situations

processing skills

Table 1: Learning Outcomes

The Learning Outcomes we are interested in when teaching
Applications are probably on the left-hand side, while those for
learning Modelling are more obvious on the right-hand side — an early
indication that there may be very significant differences between the
optimal approaches for what is often considered the single subject area
Applications and Modelling (see Blum, 1991).

The literature of Learning Outcomes is still small, but a recent guide for
staff (see Thorne, 1993) contains the chapter headings shown in Table
2. Again, these would be familiar to those of us designing courses on
Mathematical Modelling, but would be far less relevant to courses on
Mathematical Applications.
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The behaviour we want from the learner
The degree of autonomy we want from the learner
The context in which the learning is demonstrated

Table 2: Writing Learning Qutcomes

Learning Outcomes — and the related area of Competences and Work
Based Learning, where we are interested in students demonstrating
these outcomes in the workplace rather than merely in the classroom
— are a necessary preliminary stage to work on assessment, since there
is little point in improving the way that we assess the work of students
if we are not clear exactly what it is we are wanting students to learn.

~ These issues become even more crucial when we begin the Assessment
of Prior Learning (APL) — learning that has taken place prior to the
student joining the institution. Sometimes that learning is Certificated
(APCL), typically where the student has undertaken an incompany
+ training course of some type, but more often (and leading to more
difficulty in assessment) it is Experiential (APEL), typically where the
student has learned a range of skills whilst in employment. I know
of no work to date on APL in the area of Mathematical Modelling -
perhaps because we are still unclear of the Learning Outcomes that we
are trying to facilitate in the student!

TECHNOLOGY-BASED TRAINING

Teaching and learning is presently a big growth area in UK higher
education, particularly the application of new technology to the
teaching and learning process, but it is unfortunate that the use of
technology-based training (TBT) is often driven by ecoromic rather
than educational reasons.

One of the more interesting reports in the area comes from the Scottish
Vice — Chancellors (MacFarlane, 1992), whose main recommendations
are shown in Table 3.
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Title: Teaching and Learning in an
Expanding HE System
Recommendations: Create Teaching and Learning Board

Require universities to publish T&L strategy

Funding Councils should take a strategic
view of T&L in HE

(motivation/initiative/self-reflection)

Table 3: MacFarlane Report

However, its recommendations may well lead to a higher level of
standardization across UK universities which, while bringing resource
savings, may tend to stifle the individual experimentation which is often
the forerunner of exciting and worthwhile developments.

The national Teaching and Learning Technology Programme (TLTP)
is also designed to lead to greater standardization, this time in the
courseware that is used with students, but the approach taken has
emphasized the importance of consortia of universities in increasing the
local ‘ownership’ of the materials produced. The aim of the Programme
is ‘to make teaching and learning more productive and efficient by
harnessing modern technology’, and Table 4 gives details of timescales
and funding available.

TLTP1 TLTP2
1992-93, for 3§ years 1993-94, for 3 years
£7.5M in first year £3M in first year

Table 4: Teaching and Learning Technology Programme

Table 5 shows a summary of projects funded under the first phase of
TLTP, where work is being done on improving the learning technologies
themselves, in specific subject areas, and — yet again — on the generic
transferable-gkill areas.
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New technology Generic areas Subject areas
Multimedia Study skills Maths
Hypertext Assessment Stats

CAL ‘

Table 5: TLTP1 Projects

However, if we examine those TLTP projects in the area of mathematics
(see Table 6) it is clear that they are all concerned with computer-based
training in mathematical skill areas, and that no work is being funded
in the area of Mathematical Modelling. '

UK Maths Courseware Consortium
Coordinated development and evaluation
of courseware for basic maths skills
Modules for remedial teaching of maths to
scientists and engineers using Mathematica
Notebooks _
CALGroup Engineering -Consortium

Table 6: TLTP1 Maths Projects:

2. NATIONAL EDUCATION AND TRAINING
TARGETS

Before moving on to describe some of the recent initiatives in schools,
we ought to mention the ambitious National Education and Training
Targets that were adopted by the UK government in 1991.

Table 7 shows the Foundation Learning Targets — those aimed
specifically at young people. NVQ is the competence-based National
Vocational Qualification awards scheme, where NVQ 2 is the level
expected at the end of compulsory schooling at the age of 16 -~ for
most students in England (Scotland having a separate system) this
takes the form of the General Certificate of Secondary Education (the
GCSE). NVQ 3 is the normal university entry level which, in England,
would often be represented by the Advanced level exam (A-level).
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Lifetime
Learning Targets
For the workforce
All employees in tralmng
by 1996
50% working for NVQs
by 1996
_50% to NVQ 3 by 2000
50% of companies in
Investors In People scheme

Foundation
Learning Targets
For young people
80% to NVQ 2 by 1997

NVQ 3 available to all

50% to NVQ 3 by 2000
Self-reliance, flexibility
and breadth

Table 7: National Education and Training Targets:

Self-reliance, flexibility and breadth are all familiar Modelling aims,
and attributes that we would encourage in all our students, but
many UK observers have difficulty with the government’s desire to
demonstrate all these outcomes in the workplace — especially if they
.are observing from a school! Incidentally, the figures quoted in the
Targets are approximately double the actual values that applied in
1991, so achievement of the Targets would represent a very considerable
increase in the profile of education and training for young people.

Table 7 also shows, for comparison, the Lifetime Learning Targets -
those aimed specifically at people in work. Once again NVQs are to
the fore, as is the Investors In People programme — a scheme, including
tax benefits, which is designed to encourage employers to value, and
_pay for, training. The Targets, as before, are a.pprox1mate1y double
the 1991 actual values, and so represent a very considerable increase in
training in the workplace.

3. NATIONAL INITIATIVES IN SCHOOLS

Before discussing national initiatives in schools, it is worth reminding
ourselves of the National Curriculum that operates in the UK — or °
rather in England, since Scotland, Wales and Northern Ireland operate
somewhat different schemes.

Key Stage 4

Key Stage 1 [Key Stage 2 [Key Stage 3
Ages 5-7 Ages 7-11 Ages 11-14 Ages 14-16
Levels 1-3 " [Levels 2-5 Levels 3-7 Levels 4-10

Table 8: English -Nationa_l Curriculum
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The curriculum is divided up into four Key Stages, at the end of each -
of which there is compulsory and standardised testing — at the ages of
7, 11, 14 and 16. These Standard Assessment Tasks (SATs) — rather
similar to the Common Assessment Tasks carried out in Victoria in
Australia — are presently the subject of much heated discussion in the
UK, since classroom teachers are not convinced of the worth of the
present tests and feel that a huge amount of class time is being taken
up by an unreliable and untested instrument.

There is very little mention of Modelling in the Mathematics sections
of the National Curriculum (NC), and one has to look in the IT section
of the Technology NC in order to find the headings given in Table 9.

IT in the National Curriculum
Communicating information
Handling information

Modelling

Measurement and control
Applications and effects

Table 9: IT in the National Curriculum

Aims such as ‘communicate and handle information’, ‘design, develop,
explore and evaluate models of real or imaginary situations’ and ‘make
informed judgments about the applications and importance of IT and
its effect on the quality if life’ are familiar to those of us working in
Mathematical Modelling, and a welcome addition to the NC — even if
somewhat buried in all the verbiage!

A recent report by Her Majesty’s Inspectorate (HMI, 1988), when
examining IT in secondary schools, noted that

A characteristic of much work in IT is that pupils work for
prolonged periods without needing support, encouragement
or. prompting

which is echoed by many observers of modelling work in schools (see,
for instance, Galbraith, 1994). However, when the National Curriculum
Council cafried out a series of monitoring studies, they found that only
about 10% of the pupils were actually carrying out work on Modelling
and only about 10% were working on Applications (see Table 10, which
is taken from the same HMI Report). :
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Key Stages 1 & 2 For IT Attainment Target
65% Year 1 used IT 50% handling information
for at least 1 hr/wk
50% Year 3 used IT 50% communicating information
for at least 1 hr/wk
33% of classes had 10% modelling
exclusive use of a PC
<40% of Year 1 20% measurement and control
used a printer -
<40% of Year 3 10% applications and.effects
used a concept
keyboard

Table 10: NCC monitoring of IT in schools

One possible explanation could be that there is still little good material
on these areas in the Technology literature, and that teachers are
unwilling to move into new areas without adequate support. However,
there is now a substantial body of material in the area of Mathematical
- Modelling, much of which would be transferable immediately to this
new arena if publicised appropriately. Here we have a clear example
where subject boundaries are inhibiting progress on the wider front.

Another interesting point made in the HMI Report concerned equal
opportunities.

Statistics More boys than girls use computers

Parents more likely to buy home computer
for boys

Computer games aimed at male market

Technology Boys see computing as an interesting hobby

and jargon

Teachers Many secondary IT teachers are male
Classrooms Boys dominate computer activities
Groupwork Girls work better in cooperation,

rather than competition

Table 11: IT and Equal Opportunities




Ch. 3] Modelling — A UK Perspective 55

I am increasingly concerned by the preference shown by boys and

young men towards Modelling, and the fact that this added motivation
sometimes leads to better performance than by girls and young women.

This might reflect the increasing use of IT in Modelling — and hence

be a direct mirror of the effect observed by the Inspectors ~ or it could
be one of the more subtle problems discussed by Blum (1994). Clearly
more research is needed in this important area.

The Department for Education has recently funded several projects in
the area of information services one of which, promoting the use of-
CD-ROMs in schools, is outlined in Table 12.

Run by: National Council for Educational Technology
Funding: £2M from Department for Education

Scope: About 600 secondary schools -

_ 1 CD-ROM drive and 4 CD-ROMs

Discs: Most schools used same discs

ECCTIS

Grolier

Times/Guardian/...

Shakespeare

Table 12: CD-ROMSs in schools

The CD-ROM in Schools project provided funds for one CD-ROM drive
and four discs (mainly information services such as newspapers and
encyclopedias) in all secondary schools and a few primary schools. The
evaluation study makes interesting reading (NCET, 1992), and shows
that a dramatic effect has been made on many subjects — areas such
as English and History, for instance — but that there has been little
discernible effect on Mathematics or on Modelling. This seems strange,
since so many Modelling case studies are based around data handling
and information, but the materials are so new that time is perhaps
needed in order for them to be widely used right across the curriculum,

4. INITIATIVES IN THE HOME

When compared with the £2M spent on the (very successful) CD-ROM
in Schools project, the amount spent on computer games each year is
clearly of a"different order of magnitude — almost £700M in the UK
alone last year!

Heppell (1993) made an impassioned appeal to all schoolteachers to
review their attitude to home computer games — the sort manufactured
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by Nintendo and Sega — since we would dearly love children to be
‘hooked’ on learning at school in the same way that they are on
computer games at home, and the negative attitudes displayed by many
adults — ourselves, as educationalists, included - only increases the gulf
between learning and playing.

When Sega ran a competition, last year, to design a television advert
for them, no less than 700 schools took part. It would have made an
ideal Modelling project, integrated into several'sireams of the National
Curriculum, but unfortunately very few schools took this opportunity
to bridge the gulf between home and school:

On one level this is entirely understandable. More children in the
US now recognise Mario — and his mates Koopa, Troopa, Bloober
and Podoboo — than recognise Mickey Mouse, and 1 sympathise with
children who find Mario and Sonic more appealing than learning sums,
so what should we do?

If we try to categorize computer games into various styles, we find that

they tend to fall into the following categories.

Games styles Features Attributes

Narrative Watch and learn Observe

Interactive Choose and so ‘Question

Participative Contribute Hypothesize
and create -and test

Table 13: Games styles, features and attributes

Really successful games tend to be Interactive and Participative, just
like good teaching! They also seem to involve the sort of attributes
shown which are, yet again, just the sort of thing we encourage in
Modelling classes.

Progress cannot be made until we appreciate our prejudices: not all
computer games are bad — nor are they all good — but the problem-
solving skills that many successful games display are transferable to
other areas of ¢hildren’s learning. As Heppell puts it, “The Andy Pandy
generation is leading the Sonic generation into the information age —
and the Andy Pandy generation has some homework to do”.

Many of these points are really to do with a change from teaching to
learning — what Heppell describes as “The Sage on the Stage making
way for the Guide on the Side” or Galbraith’s (1994) description
of the teacher as “The More Capable Other — but there is also an
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underlying message. Hitherto we have seen Information as the preserve
of Mathematics, but other subject areas are now asserting their rights to
access Information directly - and Mathematics is in danger of becoming
marginalised if this attitude is not re-examined.

5. THE LINK WITH MODELLING

Many of the comments above may appear to have little to do with
Mathematical Modelling ~ ‘Modelling’ has been mentioned frequently, .
but ‘Mathematical Modelling’ appears only occasionally. T would like
to pose a few questions for the Mathematical Modelling community.

e What are we teaching — and why? The use of learning outcomes
and capabilities may help us answer this vital question — and
to distinguish between Mathematical outcomes thdt we are
attempting to facilitate, and more general transferable skills.

o How will students use what we teach them? The study of
competences and vocational relevance may help us to focus our
attention on what is needed and what is peripheral.

o What is the place of the new learning technologies that are now
avatlable? New technologies can help us minimize the maths —
and so allow students to focus attention on the modelling — but
we must be careful when adopting this approach.

e Is our primary interest in Mathématics, or are- we really
concerned with a range of Information skills that are of much
wider interest?

As a postscript, I would like to refer to the only series of conferences
that is dedicated to the teaching of mathematical modelling —
the ICTMAs. ICTMA-1 and ICTMA-2 were entitled International
Conference on the Teaching of Mathematical Modelling (perhaps
they should have been ICTMMSs?), while ICTMA-3, ICTMA-4,
ICTMA-5 and ICTMA-6 were all entitled International Conference
on the Teaching of Mathematical Modelling and Applications (surely
ICTMMASs?). .

Perhaps the communal subconscious of the organisers is at work here,
and there really will be an ICTMA soon — an International Conference
on the Teaching of Modelling and Applications — concentrating more
on transferable skills, the social uses of Modelling, the history and the
philosophy, and less on its birthplace within Mathematics? Only time

will tell. : '
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A Socio-Constructivist
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SUMMARY

Research has shown that knowledge alone is not sufficient for successful
modelling: the student must also choose to use that knowledge,
and to monitor the progress being made. Metacognition involves
awareness and control of one’s own thinking. Distinct elements in
metacognition have been identified, including knowledge of one’s own
thought processes, the control and application of that knowledge, and
the learners’ beliefs about the nature of mathematics and themselves
as learners.

This paper describes an action research project into the use and
practical application of mathematics. The learning of mathematics
is interpreted as ‘a socio-constructive process. Modelling skills were
found to be most successfully acquired when ‘scaffolding’ is provided
to structure the task into steps that the student can just manage.
Questions and discussion which form this scaffolding should be general
rather then task-specific to facilitate their internalization into student’s
schema.. '

Effective teaching approaches are identified which socialize students
into a consensual interpretation of modelling culture. This supports
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the development of the metacognitive skills of planning, monitoring
and evaluating which are integral to successful modelling.

Developing Metacognitive Skills In Mathematical Modelling: A Socio-
Constructivist Interpretation

INTRODUCTION

The Use and Practical Applications of Mathematics Project was funded
by the Welsh Office during 1991/92. The project aimed to develop
approaches and materials to teach and assess the thinking skills
involved in using and applying mathematics in practical, modelling
situations, with students aged between 11 and 16.

Problem solving and modelling are of increasing importance in
mathematics. The national curriculum for mathematics in England
and Wales requires all students to use and apply their mathematics in
a variety of situations including practical tasks and real life problems.
Since the 1970’s, mathematical modelling has been seen as a unifying
theme for all applications of mathematics {Burghes, 1980) and calls
are growing for modelling to form an explicit part of the mathematics
curriculum (Blum and Niss, 1991).

The terms mathematical model and modelling are no longer restricted '
to concrete geometrical objects and their construction. Recently, much
wider definitions have been employed:

The process of starting with a real problem, abstracting and solving
a corresponding mathematical problem, and then checking its solutions
in the practical situation is often called mathematical modelling. (DES,
1985 p.41) _

The stages and processes involved in mathematical modelling have been
amplified into flowcharts or algorithms by several researchers (eg: Swetz
and Hartzler, 1991). Mason, (1988 p.209) provides a basic framework
for analysing the modelling process:

1. Specify the real problem
. Setr up a model '
. Formulate the mathematical problem
. Solve the mathematical problem

2
3
4
5. Interpret the solution
6. Compare with reality
7

. Write a report
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While these models of the process may be useful in describing modelling
to beginners, they are less satisfactory as models of the processes which
learners go through when learning to model. All these models may be
criticized for the false dichotomy they create between an individual’s
perception of reality and the mathematics which s/he has previously
constructed. The form of model which a learner develops depends
on both their pre-existing mathematical constructs and the social
context in which the learner is situated. The reality with which a
model is compared may be a social reality rather than a physical one.
Mathematical knowledge is a necessary but not sufficient condition for
successful modelling. '

THE ROLE OF METACOGNITION

Research has shown that knowledge alone is not sufficient for successful
modelling: the student must also choose to use that knowledge, and to
monitor the progress being made (Silver, 1987). It has been argued that
explanations of problem-solving difficulties based on purely cognitive
factors are incomplete (Lester, 1987), and attempts have been made to
integrate metacognition into theories of modelling and problem solving
(Schoenfeld, 1987).

Metacognition involves awareness and control of one’s own thinking
(Brown, 1987). Distinct elements in metacognition have been
. identified, including knowledge of one’s own thought processes, the
control and application of that knowledge, and the learners’ beliefs
about the nature of mathematics and themselves as learners (Lester &
Kroll, 1990). : :

Gray (1991) identified three strands in metacognition which support
the modelling process: planning, monitoring and evaluating. During -
modelling, mathematicians alternate between these strands, continually
suggesting ideas and strategies, evaluating and.criticizing them, and
monitoring the progress made. That is, expert modellers are able
to discuss and argue within themselves (Schoenfeld, 1987; Wheatley,
1991). Students need to develop such metacognitive skills of ‘inner
speech’ in order to become effective modellers.

PROJECT METHODOLOGY

A network of eight secondary schools was established. The action
research paradigm was chosen due to the novelty of the teaching
approaches which were being developed. Lessons were monitored
through self-evaluation forms and by university researchers who acted
as participant observers in approximately 100 lessons. No attempt was
made by the university researchers to be ‘invisible’ in the classroom,
rather we regarded ourselves as full participants in the experience and
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interfered significantly with the processes we were observing. By asking
students to describe the strategies they were using and how these
had been selected, we placed emphasis on planning, monitoring and
evaluating. Most teachers asked similar questions themselves.

The teacher researchers attended regular network meetings to discuss
progress and to develop approaches and activities. The activities were
designed to allow students to pose their own problems from real world
situations and formulate and test their own mathematical models.

The focus of attention of the university researchers was the interaction
between participants in the lessons and the way in which these
interactions affected the development of teaching strategies, consensual
perceptions of modelling and modelling strategies, and individual
problem solving and modelling skills.

HOW DO CHILDREN LEARN TO MODEL?

Much of the research on problem solving and modelling can be
criticized for ignoring the role of the teacher (Silver, 1987). While the
current dominant paradigm for the learning of mathematics is one of
constructivism (Cobb et al., 1992}, the social nature of learning should
not be overlooked:

Mathematical learning can be viewed as both a process of individual
construction and as a process of acculturation into the mathematical
meanings and practices of wider society. (Eisenhart, 1988).

Ernest (1991) claims that mathematics is a social construction based on
linguistic knowledge in which objectivity is gained through publication,

- .public scrutiny and criticism. Objective knowledge, therefore, is a

social construct which is continually created and recreated. The teacher
has to create such a climate of mathematical discussion and challenge
within the classroom to enable students to construct and test their
ideas explicitly with others.

" Vygotsky (1978) suggests that a child learns by interacting with

more capable others who provide sufficient support for the task to be
completed. The teacher acts as ‘a vicarious form of consciousness’
(Bruner, 1985 p.24), structuring tasks and controlling the path of
solutions until such time as the child achieves conscious control of a new
function or conceptual system. Vygotsky viewed such internalization
as a social process mediated by language, with external speech used
for communication with others and inner speech for planning and self
regulation.

Hirabayashi and Shigematsu (1987) argued that students develop their
concepts of metacognition by copying their teacher’s behaviour, and
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thus their executive or control functions represent an “inner’ teacher.
Vygotsky (1978) suggested that all such higher order functions originate
as actual relationships between individuals, thus before students can
‘internalize’ these skills they must develop them explicitly with others.
Discussion and questioning within a supportive group leads students to
construct a ‘scaffolding’ framework for each other, which enables them
to solve problems collaboratively before they can solve such problems
individually (Forman and Cazdan, 1985).

The teacher has a pivotal role in helping students to learn mathematics.
Mathematical discussion between students has to be facilitated while
constraining their interpretations and solutions in harmony with those "
of the wider mathematical community. This must be undertaken
in a communicative context that involves the explicit negotiation of
mathematical meanings (Cobb et al, 1991). Any exploration of the
development of students’ modelling abilities must, therefore, consider
the social interactions that occur within the. learning environment.

APPROACHES TO THE TEACHING OF MODELLING

A variety of teaching approaches were developed and piloted by the
action research network of teachers and university researchers. We have
characterised these under six broad headings although few teachers
restricted themselves to one approach.

Sink or Swim: Students were thrown in at the deep end with little or
no guidance beyond a simple unstructured: worksheet. Inexperienced
students were sometimes left floundering, unsure of what was expected
of them and lost as to how to proceed. This technique was successful
only with the most able students and even bere it was not the most
efficient. Pedagogy based on constructivism is often problem-solving
centred and, in some characterisations, has led to the belief that
mathematical learning should be “a process of spontaneous, unguided,
independent invention” and the “indefensible” belief that teachers
should not intervene. (Cobb Yackel & Wood 1992 p.27)

Cookbook modelling: Students were led to a strategy either through
a highly structured worksheet or through strong teacher direction.
‘This was superficially attractive in that students were maintained on
task easily, but-in the longer term the approach proved disappointing
in that metacognitive skills were not developed. Although aspects
of the structure could have been generalized to other situations, the
teacher did not emphasise them. Students were left to identify and
abstract these elements for themselves. Modelling skills which had
been “taught” using this technique failed to transfer to even slightly
different situations.

Questioning Using Organisational Prompts: A list of organising
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questions was given to the students and was referred to over a range
of activities. The list formed a strategic planning structure which
was used as scaffolding by students during the early stages. It was
supplemented with oral questions which were asked on a regular
basis, eg: ‘Can you explain your plan to me?’, ‘Does that always
happen?’. The aim was to encourage students to develop a framework
of questions to organise their thoughts. An expectation developed that
such questions would be asked and students séemed able to internalize
them for use in planning.

Internalization Of Scientific Argument: Groups of students were
required to present interim approaches and findings. Presentations
were followed up by questioning and debate. Questioning was led
by the teacher at first, with a gradual increase in the amount
initiated by students. Students began to copy the form of question
used by the teacher when framing their own. It became clear that
groups were anticipating the same form of question about their own
presentation and preparing a suitable response. The students were
learning how to conduct a scientific discussion (Wheatley, 1991) and
‘argue with themselves’ (Schoenfeld, 1987). Small group processes such
as explaining ideas, challenging the ideas of others, and reaching a
consensus, lead to structural reorganisation, more meaningful cognitive
elaborations, and the induction of reflective thought {Noddings, 1985).

Start, Stop, Go: Tasks began with a few minutes of silent reading and
planning. Small groups then discussed possible approaches. A whole
class brainstorm followed before returning to small group planning.
This ensured that all students engaged with the task and began to plan,
but that a variety of perceptions and plans was examined and evaluated.
At intervals the class was stopped for reporting back. Students began
to anticipate not only the form of questioning which would be used,
but also that reporting back would occur. Groups began to monitor
their progress in anticipation, which restrained impulsive planning and
encouraged self-monitoring.

Research has shown (Schoenfeld, 1987) that good modellers are able to
work in a strategic or control mode and thus monitor their progress at
each stage, whereas novices proceed through a problem one step at a
time without checking for sense. Successful modellers take an overview
of the situation before deciding on one approach from several whereas
novices tend to divine one approach and follow it without reflection.
The “Start, stop, go” approach emphasizes the need for self-monitoring
and reflection.

Using Peer And Self-assessment To Encourage Reflection:

Students were required to write up their work individually, but selected
groups also presented their final report to the class for peer assessment.
A vital question which had to be answered was: ‘If I were to do this
investigation again what would I do differently?’. This encouraged
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‘looking back’ and allowed consideration of the elegance of different
solutions, economy of approach to a task, etc. Assessing the work of
others helped students to negotiate and objectify the nature of a good
solution, and reporting back made them identify what was important in
their own work. Reflecting on the work of others led students inevitably
to reflect back on their own work. Through assessing the work of others,
students learned to evaluate and regulate their own thinking.

Students were encouraged to assess their own work against a seli-
assessment framework for each activity. This formed the basis for a
dialogue between the student(s) and the teacher which helped them to
understand the criteria against which they were being assessed.

ACCULTURATION INTO MODELLING ;

Supposedly ‘open’ situations are not as open and free as they seem.
To learn mathematics is to take part in a process of socialization,
or acculturation (Schoenfeld, 1987). When students approach a task,
many of the decisions about processes and outcomes have already been
determined by the common assumptions of the classroom environment.

It is sometimes argued that it is not possible to assess open ended work
due to the variety of outcomes which might be found. This implies
that a good solution would be impossible to recognise when presented.
This is not the case. Good solutions are ‘reliably recognizable’ (Scriven,
1980). Mathematicians work to a set of assumptions, often unstated,
relating to generality, economy and elegance. Teaching students
mathematics must include socializing them into these assumptions.

The explicit negotiation of meaning that occurs during ‘scientific
argument’ and ‘reporting back’ enables students to appropriate the
values of modelling culture. The teacher mediates and guides this
process, emphasising those aspects which are judged to be significant
for the students’ future learning. The small-group discussions during
‘start, stop, go’ empower the students to participate in this process of
constructing modelling culture. Students are encouraged to test their
individual, subjective constructions through discussion and comparison
with those of others. Subjective constructs gain validity through social
acceptance, thus developing students’ concepts of justification and
proof.

To be able to operate in an open, practical or modelling situation,
students must be aware of the general nature of qualities to be
found in a desirable solution and be able to assess their own work
against these criteria. The process of peer assessment negotiates
a consensual interpretation of modelling culture and self assessment
involves students in testing their individual constructs against the
constructions of others. Involvement in peer and self-assessment helps
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to develop the metacognitive skills of monitoring and evaluation.

CONCLUSION

Learning is a process of individual construction constrained by social
interactions. ~ Teaching modelling must socialize students into a
consensual interpretation of modelling culture. -The metacognitive
skills of planning, monitoring, and evaluating are integral to successful
modelling. These skills are best developed through the provision
of scaffolding, through questioning to promote the internalization of
organisational prompts, and scientific argument using the technique
described as ‘start, stop, g0’

Participation in peer and self-assessment involves the student in
a Tecursive, self-referential learning process which supports the
construction of increasingly sophisticated mathematical concepts. Self-
asscssment is at the heart of the modelling process and learning the
skills of self-assessment helps students to learn fo model.
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SUMMARY

The main purpose of this paper is the presentation and discussion of
the data obtained through the observation and analysis of an activity
of applied problem solving. We have in mind the identification of the
conceptual models that students activated and made operational in the
process of modelling a real situation. To achieve this, we considered
the combination of two levels of analysis: the dynamic features of the
process, concerning the interplay between mathematics and the real
situation, and other more static elements, namely the delimitation of
phases in student’s work. ‘

1. INTRODUCTION

One of the nine applied problems used in the course of the research
project Modelling in Mathematics Teaching 1 was the paper roll
problem. Many different references to the discussion and presentation
of this problem can be found in the literature. We adapted a version
of the problem given by Swetz and Hartzler (1991). A set of questions
concerning this problem were presented in a worksheet to a class of 10th
grade students (see Appendix 1). Students worked on those questions
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in their regular mathematics class for about 90 minutes. Computers
with electronic spreadsheets and some toilet—paper rolls were available.
One group was observed and their activity was fully recorded with a
movable video camera.

The isolation and characterisation of the most prominent phases of
student’s activity, during the exploration of the paper roll sifuation,
assumes a form of outlining that can induce and facilitate a deeper
analysis of the cognitive processes developed.

The outline presented here reflects essentially two aspects:

. (a) the evolution of student’s conceptual models (interpretations) of
the situation; .

(b) the connections “mathematics < real situation”, displayed in
student’s activity, in terms of transference processes from the
real situation to mathematics and conversely.

2. PHASE I-PERCEPTIONS OF INTUITIVE NATURE;
THE IDENTIFICATION OF VARIABLES.

After having recognised the need for additional information—the
thickness of the paper—students delineated a process of “counting” to
describe how the radius of the roll would increase as the paper was
being rolled up. One of them, taking 0,1 cm for the thickness of the
paper, explained:

~“If it, [the radius] is 5 in the first wrap, in the next one it will be 5.01,
and in the next one it will be 5.02..”.

I+ should be pointed out that this procedure, simultaneously additive
and recursive, is very easily transferable to the spreadsheet, by means
of entering a formula that relates one cell to the previous one in a
certain column. This perceptual system became fairly consensual in
the group. Almost immediately, students seemed to feel the need of
calculating the length of paper rolled up in each wrap. One of the
students wondered about what should be appropriate fo use at that
stage: either the formula for the area of a circle or the formula for
the perimeter. Eventually students decided to use the formula for the
perimeter of the circle in their following investigations.

A member of the group suggested the use of the spreadsheet, saying
that they should define a column for the radius of the paper roll in
each wrap and another column for the length of paper rolled up in each
wrap. We find plausible that the formula for the perimeter of a circle
has prompted the radius of the roll a significant independent variable.

In this first phase, we believe it is possible to identify two kinds
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of conceptual models of the situation: a modg] qualified as additive
and recursive, followed by a furctional mode]l. Tn both cases there
are indicatory clues that students’ perceptions grose from different.
reference systems of the situation.

In the first model, we may devise a process developed upen intuitions.
The action of rolling up the paper again and again was associated
with the repeated addition of a certain constant value, identified
as the thickness of the paper. This leads us to the idea of a
translation from reality to mathematics, here represented as real
situation—mathematics.

In the other conceptual model, students interpreted the real situation
according. to a certain geometrical model. It is ¢lear their conception
of the paper roll was a sequence of COncentric circumferences.
There was the capture of real elements and their integration in a
mathematical framework, showing a translation process of the kind
real situation— mathematics.

Later on, the formula for the perimeter of a circle showed the length
of each wrap as being dependent on the radius of the roll, which
determined the awareness of a significant varisble. As students
transferred this particular mathematical relation into the context of the
paper roll, they gained a new perception of the real situation, namely
the idea of a connection between the successive radii and the successive
wraps’ lengths. It seems adequate to look at thig particular aspect of -
students insight as a translation mathematics—req] situation.

3. PHASE II - STRUCTURING MATHEMATICAL
RELATIONS; THE SEARCH FOR ANSWERS.

Students enthusiastically started to create a numerical table on the
spreadsheet as soon as they became confident on the possibility
of computing some of the variables involved. The first version of
their table showed three columns in a séquentia]l order representing,
respectively: number of wraps. radius, perimeter, This particular
kind of structure, due to the relational nature of the spreadsheet,
encapsulated the composition of functions:
number of wraps — radius — perimeter.

Asa reéﬁlt, students obtained a representation of the relation between
the wrap’s number and the length of paper rolled up in that wrap.

This phase also included the process of getting a formula to determine
the total length of paper rolled up as the number of wraps increased.
Once again; the model activated had an additive and recursive nature:
one has to add the perimeter of a certain layer to the total: length
rolled up until that layer. The creation of a new column on their table
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captured this very intuitive nature of their corﬁputatidn model and
made it operational through the use of the spreadsheet.

The following step was the search for an effective answer regarding the
length of paper existing in a roll with an internal radius of 5 cm and
an external radius of 18 cm. Students used their spreadsheet data as a
way of applying their model to the real problem. They considered
R—18 as the radius of the last wrap and looked on their table for
the corresponding total length of paper which was 47.69 meters (see
Appendix 2). .

In reviewing student’s activity, we find that they turned themselves
once more to the real imagery of rolling up the paper to determine the
total length of paper rolled. They got a form of computing it by means
of a recursive model. It shows a new shift real situation—mathematics
in their thinking process..

Also, in the table produced, each wrap was associated with two different

‘variables: the length of paper rolled up in that wrap and the total
length of paper existing in the roll, This representation of the real
situation turned out to be rather solid in students’ posterior thoughts
as if it became an embedment of reality. It presents another instance
of the transference mathematics—real situation in student’s cognitive
processes. This kind of transference became even more distinct when
students looked for the the total length of paper rolled up, using specific
results presented in their table (what happens when R=187). Students
applied their model to a particular situation in order to discover the
necessary answer by means of their computational representation of the
situation.

4 PHASE I1I - THE SPREADSHEET AS AN
INSTRUMENT OF VALIDATION OF AN
ANALYTICAL MODEL

In the worksheet (see Appendix 1) it was suggested that students prove
that the number of wraps in the roll could be given by the equation:
N=(R-7)/t

For a while, they were detained in the interpretation of the meaning
of the variables in the equation and they looked for connections with
the elements shown in their table. They finally decided to use the
spreadsheet as a calculator and computed the number N for the given
values of 7 and BE. The result turned out to be 65 wraps. But when
they looked at their table they noticed that the external radius, R=18,
was paired with the value 66 in the column for the number of wraps
(see Appendix 2). This contradiction was responsible for students’
suspicion about the given equation. However, their next step was to
find the possibility of “fitting” the formula to their own data. They
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thought they should translate it into a new column in the spreadsheet.
Then, to get the first value of NV equal to 1 (the first wrap), they came
up with the recursive formula NV = (Ry41~7)/t. When they copied this
formula along the new column up to the row that contained the radius
of 18 cm, they found that the last value of N was negative. Curiously,
they started to formulate conjectures based on the real situation to
explain why that negative number had showed up. One of the students
presented the following argument: “It’s when the paper is over. It
makes all those layers and there is lack of paper for the final wrap”.
This comment was accepted by the other members, indicating that
students were inclined to agree on the existence of 65 layers in the roll.
As they stated, the 66th wrap was not actually performed because the
paper was over. :

In this phase the main stream of students’ activity concerned the
use of the spreadsheet as an instrument to validate (confirm) a
certain mathematical relation about the paper roll. They détected
an incoherence between the numerical results produced by the given
equation and their own spreadsheet data (65 versus - 66 Wraps).
However, they looked for a way of adjusting the given mathematical
model to their own sense of the situation. The significant detail of
ignoring the first value of R (R; = 5) in the recursive formula to
compute the variable N shows their effort to adjust the outputs to their-
own data. We consequently consider to have happened a transference
real situation— mathematics.

When students finally faced the negative last value of the variable N,
they had to deal with a new mismatch between their previous data
(their image of reality) and the formula output. The relevant finding
to this matter is that students chose to search reality to expldin that
particular result. The integration of aspects imported from the real
situation (there is no paper for the “last” wrap) into their reasoning,
- as a way of making sense of the result N < 0, finally led to the rejection
of & total of 66 wraps. Therefore we may understand it as a transference
of the type mathematics—real situation,

In spite of these various connections between mathematics and the
real situation, students did not criticize the validity of their basic
representation of the roll. They never came back to their former result
for the total length of paper rolled up (which included an extra wrap
in the roll} or tried to question and to improve their own model.

5. PI—iASE IV - THE EXPLORATION OF THE MODEL;
GRAPHICAL REPRESENTATIONS

During this phase, students worked on questions of the type “what
happens if..”. They began by studying the effect of duplicating the
. thickness of the roll on the total length of paper rolled up. Their first
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move was based on the real situation and they elaborated on mental
images of the problem. They assumed that the total length of paper
had duplicated and tried to work out if the number of layers would also
duplicate. Their conclusion was that the number of layers would not
increase to its double since the successive layers would be longer and
longer. Afterwards, they came back to their spreadsheet and extended
their table until the number of wraps was duplicated. They verified
that the total length of paper in that case was not the double of the
value found before.

This problem was also the motive for & subsequent debate about the
form of variation of the total length with the radius of the roll.” After
a suggestion of the researcher, they made its graphical representation
on the spreadsheet. The graph produced showed the plotting of the
pumber of wraps against the total length of paper (see Appendix
~2). Students made some interesting comments as they interpreted the
. graph. They kept in mind the idea of rolling up successively the same
amount of paper and saw how the correspondent number of wraps
was getting smaller. A detail of some relevance at this stage is that
students introduced a rectangular grid in the graph. It then showed
clearly the representation of equal increases in the total length (in the
y~axis) and the correspondent number of layers (in the z—axis), which
was decreasing.

Once more, students’ work appeared to be heavily centered on their
perceptions of the real situation. One of the most relevant issues
concerns the way students analysed the relationship between the radius
of the roll and the total length of paper. They made no atfempts to
describe it by means of an algebraic expression. On the contrary, it all
seems to have been anchored in a certain vision of the real situation,
by exploring the idea of continuing to roll up the same amount of
paper in the roll. Student’s first conclusion about the question of
duplicating the radius appealed to the real situation and took the
form of a mathematical result: the length does not duplicate when
the radius does. We think that it fits our idea of a transference
real situation—mathematics. Nevertheless, this interpretation was
confirmed on the spreadsheet in a reciprocal way. The extension of their
table was used to verify what should be the length of paper if the radius
of the Toll would duplicate. In what concerns our shifting categories,
we can detect a new translation mathematics—real situation, with
students applying their own model to confirm the answer. This bilateral
view of the problem seemed to have been the result of integrating a
certain mental image of the situation with a functional representation
presented in the spreadsheet table. We also find it significant that
students reactivated their mental image of the duplication of the length
of paper as they reflected upon the graphical representation produced.
It may indicate that the idea of fixing a certain amount of paper to
be rolled up successively and then see what happens to the number
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6. STUDENTS’ COGNITIVE PROCESSES LINKED TO
THE MODELLING ACTIVITY :

One of our main concerns was the clarification of the nature of student’s
modelling activities as we intended to construct a certain mapping of
what was evolving from a cognitive point of view.

1991; Winkelmann, 1991).

As regards this theoretical perspective we find it useful to make notice
of two interesting contributions given by Niss (1989) and Swetz (1989).
The first of these authors conceives a mathematical mode] of a real
situation as a triple (A, M, f), where A is.a certain coutext or domain

be seen as a dynamic process. The mathematical model should not
be elected as a ‘portrait of reality’, neither should it mean a statical
condensation of a piece of reality in a certain system of formal language.

mathematics and real situations, many of which are already consigned
in the traditional school curricula. He refers to things like the
organization, construction and analysis of tables of data, to the creation
and interpretation of graphs of functions, to the manipulation of
equations and inequations, to the use of maftricial representations, to
the elaboration and application of algorithms, including those that
can be used in computers, etc. This shows an appeal to several

forms of mathematical representation in the process of modelling a
real situation, a concern that is highly consensual between experts in
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this mastter.

If we decide to combine both these views, we will get to the argument
that a mathematical model sustains a permanent interaction between
reality (A) and mathematics (M) as well as it calls upon a diversity
of mathematical representations to describe that interaction. It is
based on this notion of mathematical model that we find the cognitive
processes of students to be essentially characterised by this dynamic
balance between their reasoning about reality and their mathematical
ideas and concepts. There is no doubt that the translations between
mathematics and the real situation were abundant and developed in
both ways, being the sign of an existing flow of modelling connections.
The aspects of the real situation under analysis changed .in the
course of students activity. Also the mathematical elements activated
in each phase were diverse. But the main issue is that students’
processes throughout their work showed a common trace: the dialog

mathematics—reality.

In trying to capture the essence of students’ thinking processes we
became aware of the permanent flow that was going on during the-
activity. We then explored the possibility of recognizing students
mental processes as a succession of transfers between mathematics and
the real world and we tried to illustrate how these were developed in
both directions—from the real situation to mathematics and vice versa.
In-doing so, we cameé closer to the idea that the whole modelling activity
has a cognitive architecture that could consist of a multiplication of
micro-modelling cycles. In this kind of perspective much importance
is gained by the coordination of the two sources (mathematics and
reality) in feeding students’ reasoning about the problem situation. We
find plausible that students’ understanding of the problem situation is
developed as far as they build connections between some aspects of the
real context and some elements of mathematics and as far as they make
sense of them (that is create or recreate their conceptual models of the
situation).

7. THE (MULTI)REPRESENTATIONAI.; NATURE OF
STUDENTS’ MATHEMATICAL MODELLING

In light of what has just been said, most of students’ representation
processes Were conformed with two general reference systems. One
refers to what students perceived from the real situation, according
to their own experience and knowledge of specific aspects involved in
the problem. For instance, during the whole activity the prevailing
image of the roll was a succession of concentric circles representing
the layers of paper rolled up. The other reference system included
ideas, concepts and mathematical procedures, most of them tuned with
the computational instrument they used. This double nature of their
interpretations of the problem is consistent with an idea supported by
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Lesh (1990) according to whom applied problems are “multimodal”, as
they appeal to and stimulate the 1se of several representation modes.

These two main guidelines of students’ activity are still complemented
by the multiplicity of mathematical representations involved in the
evolution and exploration of their models. They used a variety of
representation forms, between verbal statements relating variables
and describing patterns of behavior, the production of formulas
(computation algorithms), and the creation of tables in the spreadsheet
and graphical representations. -Again we may recall that the algebraic
representation was never tried or even felt necessary by the pupils.

We can say that the computational representation, attached to the
spreadsheet, has basically dominated students’ performance. It could
also be said that this computational representation has influenced the
form of attacking certain questions (as in the case.of the validation of
a given model). Moreover it may have produced a freezing effect in
the vision of the paper roll, since students never questioned it or even
compared it with the real toilet paper rolls they had at hand.

Note 1. The Project MEM (Modelling in Mathematics Teaching) is

an on-going project funded by IIE (Instituto de Inovao Educacional) - -

and developed by a group of researchers and teachers since 1991. It's a
three-year project concerning the investigation of student’s processes on
modelling and applications, the curricular integration of such activities,
and the use of computers for modelling purposes.
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APPENDIX 1
PAPER ROLLS

Many people use paper rolls in the kitchen to dry their hands. The
thickness of the paper varies with the type of roll, but in all of them
there is an inner cylinder of card around which the paper is wrapped.
The radius of the inner cylinder of the roll ROLA is 5 cm and the
external radius (cylinder plus the paper) is 18 cm.

1. Which data is needed to know the length of paper stored?

2. Construct a mathematical model to calculate the length of paper
existing in any paper roll, whatever may be its mark.

3. Show that N = (R — r)/t, where N represents the number of
wraps, B is the outer radius, r is the inner radius and ¢ is the
thickness of the paper.

(Adapted from Swetz & Hartzler, 1991, Mathematical Modelling in the
Secondary School Curriculum, p. 55-59. See references.)
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APPENDIX 2
int. radius 5
ext. radius 18
thickness. 0.2
Formula
wrap radius perimeter total length N={R-r1)/ 1
1 5 31.416 31.416 1
2 5.2 32.673 - 64,088 2
3 5.4 33,929 98.018 3
4 5.6 35.186 - 133,204 4
5 5.8 36,442 169.646 5
6 -] 37.699 207.345 6
7 6.2 38.956 246.301 * 7
8 6.4 40.212 286.513 8
9 6.6 41.469 327.982 g
10 6.8 42.726 370.708 10
11 7 43.982 414.690 1
51 15 94.248 3204.425 51
52 15.2 95.504 3299.929 52
53 15.4 96.761 3396.690 53
54 15.6 93.018 3494708 .54
55 15.8 99.274 3593.982 55
56 16 100.531 3694.513 56
57 16.2 101.788 3796.301 57
58 16.4 103,044 3899.345 58
59 16.6 104.301 4003.646 59
60 16.8 105.558 4109.203 60
61 17 106,814 4216.017 61
62 17.2 108.071 4324.088 62
63 17.4 108.327 4433.416 63
64 " 178 110.584 4544,000 64
65 17.8 111.841 4655.840 &5
66 18 113,097 4768.938 -25
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1. SUMMARY

Results of comparative empirical investigations into different English
and German educational approaches to the teaching and learning of
mathematics in context are presented. These investigations consist
of various case-studies carried out with students aged 14-16 from
the higher stream of an English comprehensive school or the higher
type of German secondary schools. The comparative -case-studies
dealing mathematically with the surface and volume of geometrical
golids or trigonometric function studies evaluate the influence of the

‘different teaching approaches on the students’ image of mathematics,

their comprehension of mathematical concepts and methods, and their
abilities to use mathematics in order to solve real world problems.

2. EDUCATIONAL FRAMEWORK AND
METHODOLOGY

A starting point for the project has been the different didactical
approacheS'to the teaching and learning of mathematics in context
developed in the last few years within the international debate. Ideally
it is possible to distinguish two different schools of thought in the

international debate:
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i) a so-called pragmatic school of thought, which puts
emphasis upon utilitarian or pragmatic goals, namely the ability
of the students to use mathematics for the solution of real world
problems

ii) a so-called scientific school of thought, which places
formal, science oriented goals in the foreground and emphasises
the ability of the students to establish relations between
mathematics and the real world. l ' :

In practice these schools of thought will not be found clearly separated,
rather they are embedded into different educational systems and
are represented to a different extent by mathematics educators or
teaching materials. The Anglo-Saxon discussion may be described
as more pragmatically oriented, originally this held more for the
North American discussion. In England such approaches gained
more importance in the eighties around the discussion of the
Cockeroft Report. In the last few years the educational debate has
changed towards an emphasis on general problem-solving skills (so-
called strategic skills). The German debate may be characterised
as scientifically oriented for the higher ability students (in the
Gymnasium) with relations to the pragmatical school of thought for
the intermediate and lower ability students (three different schools
of thought can be discriminated within the German debate, for a
description see Kaiser-Messmer, 1991).

Qo far no comparative empirical studies on the effects of these
different schools of thought on teaching-and-learning-processes
have been carried out, although comparative studies are appropriate
to point out the strengths and weaknesses of the different approaches.
There exists only various quantitative studies (e.g. SIMS) which are
based on multiple-choice tests and do not consider either classroom
processes nor the teaching and learning of mathematics in context.

We therefore decided in 2 collaborative project of the universities of
Kassel and Exeter to carry out an own study restricted to the English
and (west) German school system, which is based on observations in the
classroom and focusing on applications and modelling. Comparative
empirical studies have to take into account the differences between the
school systems as well as the differences in the underlying educational
philosophies which influence the educational systems. Concerning the
English and the German school system significant differences exist,
which may be characterised by the following catch-phrases:

a) comprehensive school system in England vs three track selective
school system in Germany

b) early specialisation in England vs emphasis on broad general
education in Germany :
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c) (still) flexible curriculum in England vs compulsory nature of
the curriculum and compulsory core subjects in Germany.

Furthermore, different educational philosophies are dominant in
England and Germany, which influence significantly the prevailing
teaching approaches and teaching styles, materials used and so on.
Holmes and McLean {1989 and 1990) develop a description of European
school knowledge traditions, in which they characterise the educational
philosophies dominant in England and Germany as follows:

i) The English school knowledge tradition is described as
humanistic, based on the principles morality (ideal of the
Christian gentleman), individualism, and specialism. The
classical roots of the English school system have led in their point
of view to the élite orientation as an important characteristic of
the English system, furthermore to the separation of education
and training, the latter not important inthe general educational
system. They further argue that mathematics teaching has little
concern for the formal learning of principles and insight into
general mathematical rules, but is based on the assumption that
children grasp general principles as a result of active discovery -
and active work through a series of examples. This had led to
the wide use of example-based, individualised work in English
mathematics teaching.

ii) The German school knowledge tradition is characterised
as encyclopedic as well as naturalist. The encyclopedic
tradition has led to a high relevance of the principles
of rationality and universality for the élite education and
subsequently a high importance of general education. The
naturalistic view aims to connect school life with the community
and environment and has led to work-oriented approaches for
the mass education. For mathematics teaching this educational
philosophy emphasises the understanding of structures and
general principles and leads to a low importance being attached
to active work through examples. In this holistic view of
knowledge, the understanding of structures is seen to be more
important than deep knowledge in single areas.

This is the background of our comparative project, in which we
are secking to make comparisons between the German and the English
approaches t6 teaching mathematics and its applications. In detail we
want to evaluate questions like the following:

a) Which approach is more appropriate for promoting the ability to
apply mathematies in real-world examples and provides
an adequate background for tackling real-world problems?

b) Which approach is more appropriate for developing a balanced
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image of mathematics as a science or a comprehensive
understanding of the mathematical concepts and methods used?

We developed research-guiding hypotheses on these issues, amongst
others we supposed strengths of the English approach concerning
the promotion of applied problem-solving abilities and.strengths of
the Germarn approach in the area of insight into the underlying
mathematical structure and conceptual comprehension. We have
based our project so far on case-studies, which ‘are thought to be
especially suitable for generating research-guiding hypetheses and
therefore match the exploratory character of the project. Till now,
several case-studies in English and German school classes have been
carried out based on teaching materials which are characteristic either
of the pragmatic or the scientific school of thought. The case-
studies have been limited to the higher stream of (English or German)
comprehensive schools or the (German) higher school type at the lower
secondary level (Gymnasium). As a research method the techniques of
participating classroom observations, attitude and achievement tests
have been used. : '

3. DESCRIPTION OF THE TEACHING OBSERVED

Two extensive case-studies have been carried out so so far, the first
dealt mathematically with surface and volume of geometrical
solids, the second dealt with trigonometric functions. Due to
space limitations I will restrict myself on the first study (for a more
detailed description in German see Kaiser-Messmer/Blum, 1993, for a
description in English see Burghes et al, 1992). In this study two
English groups of year 10 in the English school system (age 14-15) of
the higher stream of a comprehensive school in a commuter town near
London and three German groups of year 10 in the German school
system {age 15-16) of the higher type of German secondary schools in a
bigger German town participated. The two English groups comprised
28 students, of that 14 girls, and 27 students, of that 11 girls. Two
of the three German groups were from the the same school with 24
students, of that 16 girls, and 14 students with 3 girls. The group from
another school comprised 16 students with 9 girls.

The lessons in England were based on the “Enterprising
Mathematics Course” from the Centre for Innovation in
Mathematics Teaching (Exeter), which is characterised by its strong
emphasis on the development of mathematical concepts out of real-
world contexts and its individualised approach (see Hobbs/Burghes,
1989). The teaching unit observed was the unit “Containers for
Everything”, which is structured as follows:

i) classification of different containers according to their
geometrical shape as starting point
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ii) models of pyramids and combination of three pyramids to a
prism or cube, calculation of volume '

iii) volume of prisms and cylinders
iv) models of cones, curved surface area and volume of cones
v) volume and surface area of spheres.

The examples were taken from everyday life. They dealt especially with
the design of packaging and the comparison of different containers.

Similar teaching approaches could be observed in the two groups, who
spent 5 weeks on the unit; in detail: the students worked 3 weeks on the
new topics developed in the teaching materials, afterwards the groups
spent 2 weeks on their course work on related themes (like minimal
surface area of a juice container with volume given using cubes, prisms
...). Individual work or work in pairs, with teacher help when necessary,
was the dominant interaction form.

The lessons in Germany were based on the textbook ‘Mathematik
heute’, which uses many real-world examples from everyday life,
architecture and technology, and is characterised by its carefully graded
concept introduction. The teaching unit was structured as follows:

a) slant drawings, surface drea and volume of prisms and cylinders

b) surface area and volume of pyramids and cones (based on the
theorem of Cavalieri)

c) surface area and volume of spheres,

Different teaching approaches could be observed in the 3 participating
groups: The teacher in the first group with weak students, who had
only 3 weeks teaching time, put more emphasis on explanations of the
underlying geometrical relations and gave low value on the performance
of algorithms. In the 2 other groups with 6 weeks teaching time, the
teacher highly emphasised precise concept introduction as well as
accurate realisation of the algorithms.

In the first group, class discussion structured by the teacher was
' the dominating teaching form, in contrast to the two other groups,
‘which were taught in a strongly guided class discussion centred
on the teacher with only short exercise phases. During the classroom
observations” each group participated in 1 or 2 teacher-developed
classroom tests on the themes. : -
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4. RESULTS OF THE STUDY

4.1 Teaching Styles and Teaching Content

The classroom observations showed that- there -were remarkable
differences concerning teaching styles and teaching content between
the mathematics teaching in England and Germany. The main aspects
were the following: .

* In German mathematics teaching great store was set by the
class discussion between teacher and all students as a group,
whereas in English mathematics teaching individualised work
was the dominating teaching-and-learning-form.

The German teachers dictated more strongly the interaction
and pace in class than mathematics teachers in English schools,
which allows one to cover more topics in the same time in
mathematics lessons win Germany than in England. In English
classes observed, teachers often had difficulties in adequately
directing the individualised work of all the students.

A main feature of mathematics lessons in Germany was its
overall orientation towards tasks, for which nothing similar
in English mathematics lessons could be observed.

In mathematics teaching in German schools short problems
with definite solutions dominated against comprehensive
problems tackled more often in English schools.

English mathematics lessons more often dealt with real-world
examples than German mathematics lessons and they were
very often practical and investigational, whereas in German
lessons structured, less-practical examples dominated.

In German mathematics teaching great store was set by precise
and correct mathematical speech and writing, whereas
in English mathematics lessons it was often regarded as old-
fashioned to pay particular attention to precise and correct
formulation. ,

The German mathematics teaching was characterised besides its
conceptual precision, by its orientation towards a
mathematical structure. On the whole it was common for a
large area of mathematics to be taught in one go in Germany,
whereas in England it was usual for the subject matter to
be delivered through the year in small parcels, which as a
consequence built up difficulties for the overall understanding of
the topic. :
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4.2 Attitudes Towards Mathematics

At the end of the teaching units observed, an attitude test (in
connection with an achievement test, see 3.3) was carried out with
the students, which points out that the different teaching approaches
have led to remarkable differences between the English and the
German students in their attitudes towards and their image of
mathematics. The main issues are briefly: Among others, German
students emphasised aspects of mathematics as a science such as the
logical structure of mathematics or the theory-orientation, whereas
more English students named aspects concerning the teaching-
learning process. '

In the following a few typical examples of students’ answers to the
question on whether mathematics is different from other subjects:

Yes the maths lessons are different to other lessons as most of the
time, we are allowed to work in pairs or groups and so it makes solving
problems easier as the task is shared. The differences lies in my opinion
in the logical structure. (translated by G.K-M.)

No differences between English and German students emerged
concerning the subscribed relevance of mathematics for life. Many
English as well as German students described mathematics as highly
important for life, but most of the students were not able to give
substantial examples in which they really have used mathematics in
daily life or other subjects. They only were able to name areas like
shopping or banking. A few typical examples:

Maths is very relevant to everyday life, it teaches you how to cope with
different situations and problems e.g. adding up bills, choosing my bank
account, etc.

I counted the amount of calories in my ddz’ly intoke.

I have learnt to check my change. (translated by G.K.-M.)

4.3 Achievement in Real-world Examples and Concept
Comprehension

The concept comprehension and the achievements in tackling real-
world examples were tested with the participating English and German
groups about 6 weeks after the end of the teaching units. Because
of the small sample size I will emphasise the interpretation of the
results on the basis of the teaching observed in contrast to pure
number comparisons. 51 English and 41 German students participated
in the test, which covered in 13 questions with 31 parts, questions
on concept comprehension, usage of standard methods to solve real-
world examples, and mathematising problems within the mathematical
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context of prisms, pyramids, cones, cylinders and spheres. The test
time was 45 to 50 minutes. 44% to 48% of the tasks were tackled by
the German resp. the English students. Due to space limitations I will
present only a few of the results. '

Prism
B1l. Which of these solid shapes are prisms? Mark in the picture one
cross-section.
by 0 F Y F
a) - G F | |
D AN E
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This question should examine how far the students have gained an
appropriate concept comprehension.

A few more German than English students have given correct solutions,
namely 34% compared to 24%. A detailed analysis of the results shows
that the two German groups with the more able students have nearly
completely failed in contrast to the weaker group.

- A possible ezplanation might be the following: In these two groups
the focus had been within the concept introduction phase on the
classification of real objects. It seems plausible that the students did
not sufficiently integrate the action and the representation level of the
mathematical concepts introduced, in contrast to the third German
group and the two English groups which had learned to read graphical
representations of real objects.
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Change of Cylinder Volume

B5. How does the volume of a cylinder cha.ﬂge, when

a) the height is (i) doubled  (ii) trebled
b) the radius is (1) doubled  (ii) trebled

c) the height and the radius is (1) doubled
(if) trebled '

Give a general rule to describe the changes.

This task should test how far the students had developed the ability of
functional thinking (i.e. ‘What happens if ...”).

Compared to the results of the foregoing task a reverse picture arises:
Significantly more English than German students have given correct
answers, e.g. 49% resp 28% of the students have correctly solved the
whole task, only 12% of the German students compared to 39% of the
English students solved part c) correctly. Furthermore the German
students were strongly oriented towards rules.

Compared to the results of the foregoing task, these results might
be surprising, but taking into account the classroom observations,
reasonable explanations are possible: The English mathematics
lessons had dealt with similiar tasks quite often, whereas such problerns
had been treated in the German lessons very seldom. This, confirms
an observation, well-known in mathematics education, that functional
thinking cannot simply be expected as a transfer after discussing the .
underlying functional relations, but has to be trained explicitly.

Pyramids

B6. The volume of a pyramid equalé % X base area x perpendicular
height. ' ' :

Give reasons for this rule. (Try to remember the explanations
which have been given in the topic unit.)

This question should test if the different approaches to substantiate this
formula, common in the English and German lessons, had influenced
the remembrance of the explanations after a few weeks.
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Significantly more English than German students have remembered
the basic idea that three pyramids, equal in volume, can be combined
to a prism or cuboid (43% compared to 20%). Ouly the most able
German students remembered the detailed explanation given in the
German lessons based on the theorem of Cavalierl. 73% of the German
students compared to 39% of the English students did not even try any
solution (reason: ‘I cannot remember.’). '

These results lead to the hypothesis that the approach to explain
formulae based on activities of the students, more common in English
than in German mathematics lessons, is more suitable at least for
the majority of the students. The mathematically more precise
explanations, common in German classrooms, may lead, at least for
the majority of the students, to a complete failure in memorising any
explanations.

t

Mathematising Problem

B12. In forestry, a rule of thumb is used to determine the volume of
a tree to be cut. This is based on the diameter in the middle of
the tree and the height of the tree.

a) Develop such a rule.

b) Why is this rule of thumb not accurate?

c) How would it be possible to find the volume more precisely?

This partly structured problem should test the students’ abilities to
mathematise unknown real-world situations.

Only a few students have tackled this problem, many more German
than English students (20% to 5%) with the German students receiving
significantly better results. Two German students and one English
student developed a correct rule of thumb, 15% of the German and
4% of the English students have given correct reasons why this rule
of thumb is not accurate. Only one German student developed a
proposal for an improvement of this rule of thumb (mean of the two
basic areas x height), two more English resp. German students have
given partly right ideas. The small number of answers allows only a few
interpretations. It is remarkable that the observed English mathermnatics
teaching with its stronger orientation towards real-world examples did
not succeed in enabling the students to mathematise easy real-world
problems. This points out that mathematisations are intellectually
very ambitious and very difficult to learn for all students, independent
from the underlying didactical approach.

It is generally noticed that the students with good achievements in the
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whole test performed well in the mathematising problems. - This leads

to the hypothesis of a strong relation between mathematical and

applied problem-solving abilities.

5. CONCLUDING REMARKS -

Tt can be stated that the reported empirical studies have shown
that there exist big differences between the English and the German
mathematics lessons concerning the dominant teaching style, teaching
content, and relevance of real-world examples. Furthermore, significant
differences in the attitudes and achievements between the English and
the German students could be seen, but smaller than expected. As
described, differences between the English and the German students’
image of mathematics could be seen. In contrast to our research
guiding hypotheses, described in the beginning, both groups had severe .
difficulties to solve real world problems with other than standard
methods. Furthermore, in contrast to the starting hypotheses as well,
the results concerning the concept comprehension were varied with
strengths and weaknesses of both groups. Further studies on a broader
scale are necessary in order to come to more secure knowledge about the
influence of the different teaching approaches, common in English and
Cerman mathematics classes, and on the attitudes and achievements of
the students. We have therefore started a longitudinal study which aims
to examine the development of the mathematical knowledge of larger
samples of students in both countries at the end of their compulsory
schogling (for a description of the planned study see Burghes ef.al.,
1993).
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SUMMARY

Workshops were conducted for middle school mathematics teachers
to expose them to new approaches to instruction and assessment.
Since teachers’ conceptions of mathematics, instruction and assessment
seem to influence teaching practice, one goal of the workshops was
to challenge the teachers to reshape and integrate their views with
the new approaches. This chapter will first describe how performance
assessment activities are proposed as a way to integrate instruction
and assessment for enhancing and assessing higher order thinking in
students. The workshops will be described briefly and the results
discussed. The workshops included teachers taking on the role of
students to work on a problem and then returning to the role of
teacher to reflect on that experience. Evidence indicates that the
experience of the workshop provided specific opportunities for the
teachers to question, rethink, and remodel existing conceptions of
mathematics, mathematical modeling, and issues related to instruction
and assessment.
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1. INTRODUCTION

The current reform in mathematics education calls for a de-emphasis
on drill and practice “basic skills” type of activities, and an increasing
emphasis on open-ended, real-world problem situations (NCTM, 1989).
' Real-world problem situations are realistic (not contrived illustrations},
create the need for a mathematical model, and allow for multiple
solutions and/or solution paths (Burkhardt, 1981; de Lange, 1987,
Lesh and Akerstrom, 1982). A mathematical model is a situated
mathematical system that contains mathematical objects, operations
on those objects, and the relations between them for “describing,
explaining, constructing, modifying, manipulating, and predicting
our increasingly complex world of experiences” (p. 21, Lesh and
Lamon, 1992). The mathematical modeling of real-world problem
situations is generally perceived as having the potential to contribute
to the development of higher-order thinking, and the assessment of
performance and conceptual understanding.

Performance assessment, also referred to as authentic or alternative
assessment, is a form of assessment that requires the students to
perform a task rather than select an answer to a multiple choice item
(Zimmermann, 1992). Performance assessment activities encourage
the student to demonstrate their knowledge and understanding.

Performance assessment tasks that involve open-ended, real-world

problem situations allow for multiple levels and types of solutions.
These types of problems have the potential to provide teachers with
information about students’ higher order thinking about mathematics
that is not possible from more traditional forms of assessment.

The performance assessment activities used in the workshops were
taken from the PACKETS® Program: Performance Assessment for
Middle School Mathematics developed at Educational Testing Service,
a national educational measurement institution based in Princeton,
New Jersey, U. S. A. Each PACKETSY activity includes a newspaper
article followed by readiness questions that focus on understanding the
context of the article, a model-eliciting problem based on a real-life
situation for which the solution must address the needs of a client (i.e.
editor for the local newspaper), a model-exploration problem, and a
model-application problem. Each problem is designed as a project-
sized activity that is worked on by small groups (3-4 people) for about
40-50 minutes, and then éﬁ)lutions are shared and discussed by the
whole group. PACKETS® activities were specifically developed as
instructional tools for classroom use as a way to integrate instruction
and assessment, rather than as test-like items for accountability
purposes in large-scale assessment (Katims, Nash, and Tocci, 1993)
that perpetuate the separation between instruction and assessment.

The implementation of mathematical modeling in the classroom
has been proposed as a way to align instruction with the new
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directions in mathematics education, especially with respect to the
emphasis on using activities that elicit higher order thinking in
students. To implement mathematical modeling activities successfully,
teachers should have clear ideas about how to mathematize problem
situations, the characteristics of appropriate mathematical models,
and how to assess them. Teachers’ ways of thinking about real-
world problem situations, including their conceptions of mathematical
models, modeling, and mathematics in general, influence the ways that
those problem situations are implemented. Initial information from the
teachers who participated in the workshops indicated that they were
unclear and had misconceptions about these ideas.

Thompson (1989) argues convincingly that an essential feature of
programs that aim to broaden teachers’ conceptions of problem solving
includes active involvement in problem solving and time to reflect
on that experience. To assist teachers in clarifying their ideas and
changing their conceptions about mathematical modeling of real-world
problems, it seems reasonable to h@ve teachers experience working
on such problems (eg. . PACKETS activities) from the students’
perspective. This experience can then be used to generate a reflective
discussion about mathematical modeling, characteristics of models,
implementation of such activities and related assessment issues. Two
workshops for middle school teachers, one in Israel and one in the
United States, adopted this approach to shaping teachers conceptions.

2.  DESCRIPTION OF THE WORKSHOPS AND
PARTICIPANTS

Both workshops had similar goals and were conducted in similar
ways. The workshops were conducted to identify and shape the
conceptions of the participating teachers with respect to mathematics,
mathematical modeling, and the use of real-world problem situations
in the teaching of mathematics in the middle school. The workshops
were designed so that the teachers would have the experience of doing a
problem as students, and the opportunity to reflect on this experience
both as students and as teachers. The workshops consisted of three
stages: Stage 1 involved gathering preliminary information about the
teachers’ conceptions of the nature of mathematics, real-world problem
situations, mathematical models and modeling, through discussion and
journal entries; Stage 2 involved small groups of teachers taking on t
role of students to read the newspaper article, work on the PACKETS
problem activity; and then present and discuss their solutions; Stage
3 involved returning to the role of teacher to reflect on the whole
experience through discussion and journal entries.

In Israel, 124 middle school tutor teachers participated in a sequence of
five workshops that focused on issues related to the use of performance
assessment activities. About 20-30 teachers participated at one time
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in each session of the workshop. All the teachers had between 8-15
years of teaching experience and had received extra in-service training
in mathematics education and tutoring skills. A tutor teacher spends
half a week as an ordinary teacher and the rest of the week tutoring
other teachers in other schools in instructional practices, curriculum
implementation, and other innovations.

In the United States, 15 middle school teachers came from several
school districts throughout a mid-atlantic state to participate in a
three week summer institute as a part of their continued participation
in the Teacher Enhancement Project (TEP). The TEP is focused
on supporting teachers to align their instructional practices with the
NCTM Standards (1989). One of the main goals of the project
is to encourage teachers to use mathematical modeling of real-
world problem situations with their students. Teaching experience
ranged from first year teachers to those with more than 20 years of
experience. Mathematical backgrounds varied from those with minimal
mathematics preparation required for elementary certification to
advanced mathematics preparation required for secondary certification.

Both workshops used the same PACKETS® activity. Each teacher
received a newspaper article discussing the United States 1990 census
information. The article included a “map” of the United States that -
distorted the size of each state according to the size of its population;
for example, California appeared much larger on this “map” than Texas
since the population of California is much larger than the population of
Texas. An attempt was made to retain as much as possible the relative
shape and placement of each state so as to recognise the “map” as
depicting the United States of America. The problem situation was to
produce a similar map so that a friend could write an article about the
census information from the countries in North, Central, and South
Americas. The task included constructing the map and including an
explanation of how the map was created. Participants were provided
with a map of the Americas and a list of the populations for each of
the 22 countries. Other materials such as calculators, graph paper, etc.
were available upon request. .

3. RESULTS

*

The results from the workshops in Israel and the United States Were
found to be quite similar and in agreement with their findings. In
an effort to avoid redundancy, the results have been combined in the
following discussion.

3.1 Results from Stage 1.

Several misconceptions were identified concerning mathematical models
and modeling. For example, typical comments from teachers include:
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“the most important thing in mathematics is skills and this is what
teachers should be accountable for;” and “the models are sometimes an
overload” (i.e. something extra that is not essential). Other comments
from teachers indicate a general agreement that using a real-world
problem situation would take time away from their “real” teaching
which involves helping students achieve a certain level of competency
in basic skills. These comments indicate a misconception that activities
involving higher-order thinking are less important than practicing basic
skills.

With an emphasis on teaching basic skills through drill and practice,
a related misconception is clearly evident concerning the view of
mathematics as rules and procedures to be followed in precise ways
to arrive at the one correct solution to a problem. In other words,
problems in mathematics have one correct solution and solution pa.th
Another misconception that emerged from the teachers’ comments was
that mathematical models are formulas, (eg. distance equals rate
multiplied by the time, D = R -T), or they are concrete or visual
representations used to teach mathematical concepts (eg. abacus,
cuisenaire rods, or the unit circle in trigonometry). In particular,
models are used to illustrate or solve specific problems. For example,
if a problem is identified as a “distance, rate, and time” problem, then
that is the only model that is apprc)priate to solve that problem.

Another misconception reflected teachers’ beliefs that only “great”
mathematicians could invent or create a mathematical model;
therefore, they also believed that models could not be assessed by
teachers but are just “used.”

3.2 Results from Stage 2.

As a part of doing the PACKETS® activity, each teacher group
constructed a product, presented their product to the whole group,
and justified their approach as a solution to the task. The models
used in constructing solutions could be identified or classified in a
variety of ways depending on the focus of the analysis with respect to
the mathematical objects used, the relatmnshlps and operations used,
or the representations used to “picture” the situation {for a complete
discussion and analysis of the teachers’ products see Amit and Hillman,
in preparation). In this paper, the models were identified by focusing
on the mathematical objects that were used such as numerical units,
units based on areas, and units based on ratios or percentages. The
models are not necessarily mutually exclusive in the sense that some
objects appear in more than one model, but they are used in different
contexts. At least five different models were identified in the teachers’
products. The first four models were generated by teacher groups in
both Israel and the United States. The fifth model was created by a
teacher group from Israel.
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The first model was based on a numerical external unit. Examples
included using an' external unit such as one square on the graph
paper equals one million people, or one square equals one-tenth of
a percent of the total population (see fig. 1). The population of
the U.S.A. was given as 252.5 million, so that using the first scale
requires 252.5 squares on the graph paper, and using the second scale
requires about 360 squares since 252.5 is approximately 36% of the
total population of North, Central, and South Americas. Some of the
products had “rectangular” countries, some products showed a concern
for maintaining relative shape and placement.

=

UNEENENE -
one square=0.1% of the population

*

Fig. 1 Example of Model 1 using a numerical arbitrary unit

The second model used a unit based on area. For example, one country
was selected as a unit to construct the size of other countries. A teacher
group from Israel chose the U.S.A. as the basic unit since it had the
largest population, and drawing this largest country on their map first
assured them that since all other countries had a smaller population,
they would all fit on the page. They constructed other countries by
estimating how many times smaller the population of each country was -
compared to the population of the U.S.A. and reduced the area of each
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country on the map accordingly. A teacher group from the U. S. A.
chose Bolivia (its shape and area as defined on an available authentic
map of South America) as the basic unit since its population was close
to 1% of the total population. Other countries were constructed by
figuring out how many Bolivias it took to make each one; for example,
Peru was constructed from piecing together three Bolivias since the
population of Peru was 3% of the total population (or three times the
population of Bolivia).

The third model was based on a correspondence between the ratios:
of the population to total population and area to total land area for
each country. The total area of the countries on an authentic map
was estimated to determine the total “land space” available for the
new distorted map. The ratio of each country’s population to the total
population was calculated and the corresponding ratio of available area
on the new map was used for the construction of each country (see fig.
2). A variation of this model by one of the U. S. A. teacher groups
considered the graph paper as the total land area available and used
the population ratio for each country to determine how much of the
paper was needed for each country.

The fourth model involved a similar strategy but used percentages
(instead of fractions) as the mathematical objects. The percent of
the total population was calculated for each country and then used
to determine the percent of available land area that was needed for
each country. Another version of this model was created by a teacher
group from Israel by using a circle graph for the total available land
for the countries, and used the population percentage for a country to
determine the size of the “slice of the pie” for that country (see fig. 3).

The fifth model ranked the countries from the largest population to the
smallest population and used a bar graph to represent the size of each
country with the height of the bar measuring the size of the population.

3.3 Results from Stage 3.

Teachers’ comments after the experience of doing the PACKETS®
activity -provide insight about the misconceptions that were identified
in Stage 1. During and after the activity, some of the teachers asked
“Where is the mathematics?” To answer this question, the teachers
were dsked to make a list of the objects they used in their solutions
such ‘as units, scales, areas, proportions, fractions, percentages, and
estimation. They also generated a list of the operations they used
such as comparing, ranking, multiplication and division. These lists
convinced the teachers that they were “doing” mathematics. Moreover,
it was clear in the discussion that they were making connections
between domains of mathematics that are usually perceived and taught
as discrete topics such as area and percentages.
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Fig. 2 Example of Model 3 using ratios.
English translation added for this paper.
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Fig. 3 Variation of Model 4 using percentages.

Each group explained how they mathematized the situation using the
terminology of mathematical objects, operations, and relations with
the items from the lists. Then the teachers went back to the question
“Where is the mathematical model?” The teachers agreed that their
solutions contained a “prototype mode!” that could be used to help
construct solutions in other situations. Two examples of other possible
situations where this prototype model could be used were given; one
teacher suggested creating a map to represent the amount of rainfall in
the different districts of Israel, and another teacher suggested creating a
map of the original thirteen colonies in North America that represented
any one of a number of variables such as population density, or the
- amount of gross income generated from exports. " The teachers were
thrilled that they could create a model, and some of them mentioned
that they might have created models before but were not aware that
was what they had done. The teachers’ comments also reflect a concern .
with evaluation of the models and whether it made sense to talk
about a “good” model. Several teachers (in both Israel and the U.
S.) argued that some of the products did not qualify as a “map,”
referring specifically to the bar graph and circle graph solutions. These
products, although created in Israel, had been shared and presented as
possible solutions to the teachers in the U. S. The ensuing discussion
in both workshops revolved around the question “What is a map?”
As a result of this discussion, the teachers agreed that to evaluate or
assess products constructed as solutions to a task, there is a need to be
clear about the expectations or requirements of a task solution. Clear
expectations about what is needed for an appropriate solution to the

task need not, in fact should not, limit the number of possible models.. . .
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The teachers acknowledged that there is more than one model that
could be constructed to meet the needs of the client. They seemed to
agree that rather than look for a single “correct” answer, there is a need
to identify new criteria for the assessment of mathematical models.

4., CONCLUSIONS

To promote the implementation of mathematical modeling and help
teachers become aware of how to mathematize problem situations, the
characteristics of mathematical models, and ways to assess them, two
workshops involving performance assessment activities were conducted
with middle school teachers in Israel and the United States. The
experience of performing, presenting, and discussing their solution
responses provided the opportunity to confront previously identified
misconceptions. The misconception concerning the uniqueness of
a solution to a problem or unique model was confronted with the
production of several significantly different models that reasonably
solved the problem situation. The conception that only “oreat”
mathematicians could create a miodel was confronted with the fact that
each one of the teachers contributed to the creation of their group’s
model. Moreover those models were recognised by the teachers as
“prototype” models that described systems containing mathematical
objects, operations, and relations which indicated a dramatic change
from their initial conception that a model is a formula or concrete ’
representation. ’

An interesting phenomenon that occurred was the considerable
similarity of teachers’ misconceptions, construction of mathematical
models, and reflective comments on the experience by two different
+ groups of teachers from two different cultures, using different languages,
and different settings. We do not claim that the kinds of experiences
these teachers had (doing a performance activity and reflecting on that
experience) entirely reshaped their conceptions about mathematics,
mathematical modeling, and the related issues of assessment, but
there is no doubt that some of their conceptions were confronted.
By providing experience of the activities from the student’s point of
view and reflecting on that experience, the teachers were challenged to
rethink their conceptions about mathematics, mathematical models,
and issues related to instruction and assessment. It was clearly
_evident from the teachers’ comments that many were reconsidering
their conceptions in light of their experience with the performance
assessment activities. 'The opportunity to reflect and discuss the
experience afforded the teachers a chance to reshape their conceptions.
Certainly providing the experience of doing, reflecting, and discussing
new approaches to instruction and assessment are a step in the
right direction for challenging and reshaping teachers’ conceptions of
mathematics, instruction, and assessment.
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Mathematical Modelling -
as a Context for
Preservice Teacher Education

Barry Shealy
University of Georgia, USA

Research on mathematics teachers’ beliefs indicates many teachers
present mathematics as a “cut and dried” sub Ject in which a single
correct number is the object of solving problems (Brown et al., 1990;
Thompson, 1992). The current reform movement in mathematics
education addresses this problem and calls for s shift to more open
views of mathematics (NCTM, 1989). To promote this shift, preservice
mathematics teachers need experiences that would help them develop a
more flexible understanding of mathematics and teaching mathematics,
This more flextble understanding includes an ability to recognise and

interpret mathematics in a variety of situations and from a variety of .

perspectives (cf Bauersfeldds, 1988, notion of fundamental relativism;
Cooney, 1993). Teacher education can promote development in this
ability by providing contexts for teachers to improve their propensity
to and skill at reflecting on mathematical problems and their own
learning and thought processes. Modelling activities are important
contexts for these experiences. The activities described in this paper
are from a secondary mathematics teacher education course taken by
university students in the fourth and final year of their preservice
secondary mathematics teacher education programme.® As part of the
course, these preservice teachers participated in data collection and

* The development of the activities described in this ‘paper was funded by the NSF project Integreting
Mathematics Pedagogy and Coutent in Pre-service Teacher Education, TPE-9050016, Thomas J. Cooney,
Director. . : 3 -
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| . . .
analysis activities that lead to modelling relationships and eventually
constructing a deeper understanding of functions.

In keeping with the concerns addressed above and the NCTM Standards
(1989}, several mathematical content and pedagogical goals provide
the general foundation for the course (Shealy and Cooney, 1992). In
addressing mathematical content, we wanted the preservice teachers to
develop a more informal, intuitive understanding of mathematics, to be
able to construct and organise mathematical ideas, and to generate and
evaluate mathematical interpretations. We wanted the teachers to be
able to connect the mathematics to real-world and applied situations~
including connections between different areas of mathematics—and .
appreciate the historical development of mathematics and the role of
mathematics in society. Our pedagogical goals include encouraging
the teachers to become active and autonomous learners, promoting
interaction and cooperative work among the teachers, placing the
teachers in new learning situations, and promoting reflection on their
experiences.

1. MODELLING PROCESS

Experiences with mathematical modelling of situations are important

to addressing the goals described above. DAmbrosio (1989) said that
the modelling process is the essence of creative, intelligent activity and
gives a broad definition: Modelling is the process one goes through in
which “one is faced with a situation in a real context subject to an
undefinable number of parameters, some of them even unidentifiable”
(p. 23). Most often the modelling process is outlined as a cycle with
as few as three steps (Lambert et al.,, 1989) or as many as ten (Niss,
1989). Fig. 1 illustrates a summary model we used in designing our
activities ( de Lange, 1987; NCTM, 1989; Swetz and Hartzler, 1991).

. 4 Applying, A 1
testing, Rea} prqblem Observing,
validating situation reflecting

D .
Solutions,
conclusions

B
Conceptual
model

2
Mathematizing

3 Interpreting,
generalizing,
conjecturing

Mathematical
modsal

Fig. 1 A model of the modelling process.
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The step from the real world to the conceptual problem—a simplified
version of the real world—(A to B) and the final stage (C to D)
are of particular importance for impacting the teachers’ beliefs about
mathematics. Lambert et al (1989), emphasize the importance of
viewing the first step from a cognitive psychology perspective. They
say in order for the student to make the jump from the real-world to
a conceptual model, he or she must have a strong understanding of
the real world problem domain and the mathematical domain related
to it. Further, their beliefs about the situation will affect how they
bring these two domains together to formulate a conceptual model of
the situation and how they develop the mathematical model.

Skovsmose (1989; 1990) empha,smes the importance of the final
stage (C to D) with what he calls “reflective knowledge.” In
modelling, Skovsmose says that we need knowledge about mathematics,
technological knowledge about the modelling process, and reflective
knowledge—“general conceptual framework, or metaknowledge, for
discussing the nature of models and the criteria used in their
constructions, applications, and evaluations” (p. 767). In particular,
he stresses the importance of evaluating our models and conclusions in
light of our pre-understanding of the situation and presuppositions,
guiding interests that may be present, and being cautious about
creating and applying nonexistent objects.

In order to impact teachers’ beliefs we placed a great emphasis on these
two stages. This emphasis led to the incorporation of three important
concepts into the activities. First, the importance of developing
and understanding one’s mental or conceptual model of the situation
(Lambert et al., 1989). Second, considering and analysing one’s pre-
understanding, goals and interests, and the implications of the model—
Skovsmose’s (1990) reflective knowledge. Also, in choosing situations,
we included those that would stimulate concerns beyond mathematics
and challenge the fteacher to consider implications of mathematical
descriptions, thus developing critical attitudes (de Lange, 1987). Thus,
the teachers develop and analyse a mental model, consider data in light
of this intuitive model, formulate and interpret a mathematical model,
and reconsider the orlglnal real-world situation to validate the model.
Finally, the parficipants evaluate the entire activity identifying thelr
goals and biases and evaluating their own thought processes.

2. MODELLING ACTIVITIES

To help the teachers begin to recognise mathematical situations and
practice developing conceptual models, we have the teachers consider
the use of dependent-independent ‘and correlational relationships
in everyday language and in the media. At first,- we provide
vignettes (in one vignette, for example, a doctor discusses the
effeect of a persons cholesterol level on their risk of heart disease)
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and subsequently we bave the teachers find their own examples of
relationships that may be described mathematically. The teachers .
describe the relationships, draw graphs, and compare the relationships
to familiar functions as possible models. Increasing or decreasing,
rate of change in increase, limits on domains, asymptotic behavior
are among the characteristics of relationships the teachers describe
intuitively based on these vignettes. Next the teachers participate in
several activities in which they investigate characteristics of various
functions. The teachers are generally familiar with more formal
mathematical development of families of functions-linear, quadratic,
higher-order polynomial, logarithmic, exponential, rational, algebraic
irrational, and trigonometric. To encourage the teachers to develop
more fexible understandings of these families we build on the intuitive
base developed in the vignettes. In one of the activities, the
teachers classify cards exhibiting functional relationships represented
as equations, tables of data, verbal descriptions, and graphs (see Fig.
2, for example). These card sort activities help the teachers focus
on characteristics of the functional relationships, usually moving from
superficial comparisons to more sophisticated ideas.

The 1990 census shows that

_____ Central City has a population of x|=-21—-110|1 ]2
40,000 pecple. Recent studies
indicate that over thepast20years | ¥ | 110|114
the population has steadily
increased at an annual rate of 2%.
Soctal Stientists predict Central
City will experience this growth
rate over the next 20 years. Ms.

: N Callahan has been asked to predict
2x0 2 Centrai City's population for each

of the next 15 years.

¥
1
1
JES AR R
1

S

Fred is considering which size
pizza is the better buy. He wonders
what happens to the area of the X|[2-1{1|2|4
egircular pizza when the diameter of 2. |
the pizza is changed. yi12 /4

Consider the six representations of fun_&ﬁons given above. Group them into elther two or three piles using
whatever criteria you wish, How many different groupings did you identify and what criteria did you use?

Fig. 2 Samplé card sorting activity

To build on this intuitive understanding of functional relationships, the
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students participate in several data collection and analysis activities.
In one activity, the teachers investigate the relationship between the
diameter of the area that can be seen on a wall through a paper tube
and, first, the distance from the wall, second, the length of the tube,
and third, the diameter of the tube. A second investigation compares
the period of a pendulum to the mass, length, and initial displacement .
angle of the pendulum. The teachers first describe and discuss the
characteristics they expect of the relationships—a mental experiment.
After collecting the data, the teachers give written descriptions of
the relationships, provide tables, and sketch graphs. The teachers
then describe the relationships and compare their results to their
expectations.

After the data collection activities, the teachers analyse United States
census data, investigate problems involving compounded interest, -
and discuss possible connections between a new business’ advertising
expenditures and their initial sales. By the end of the investigations
the teachers have seen realworld relationships modelled by linear,

quadratic, exponential, logarithmic, periodic, rational (y = %) and
algebraic (y = %) functions. We then have the teachers compare and

contrast the infuitive relationships and the explicit types of functions
to strengthen their understanding of the function characteristics.

3. DISCUSSION

Davis (1991), quoting Berlinski, said that “mathematical descriptions
tend to drive out all others” (p. 4). Davis followed this quote
by saying that “once a mathematical description is in place it is
harder to change than moving a grave yard” (p. 4). Research in
mathematics teachers’ beliefs (Thompson, 1992) provides evidence that
teachers have preconceived mathematical ideas that are resistance to
change. This difficulty was evident as we worked with the teachers.
Consider what happened in one of the investigations (recall that these
teachers have a strong university mathematics background). When
the students were analysing and discussing United States population
dsta and trying to determine types of functions that would model the
data. All the students expected an exponential function to provide the
best model. The data from 1790 to 1860 demonstrates almost pure
exponential growth to reinforce this idea—counsistent 32% growth rate
per decade. It happens that from 1940 to 1990, a linear function or
a logarithmic function is as good or better than an exponential model
(see Fig. 3). In the discussion that followed, one student strongly
argued that any non-exponential trend would not continue and that
over the long run we would see a continuation of exponential growth.
Tn her words, “Population grows exponentially, that’s the way it is.”
This commitment exemplifies the perseverance of mental models that
do not match relationships we]l and the strength of commitment to
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prior convictions in light of evidence to the contrary. It is interesting
that the teachers who clung to an exponential model of population
growth regained their exposure when presented with an alternative
model-the logistics curve. These teachers much prefer an established
mathematical description to dealing with uncertainty.

2600 +
2400 + -
2200 + -
2000 + -
180.0 + -

160.0 1
140.0 -
120.0 -T»

100.0 —

1940 1990

Fig. 3 United States population, 1940-1990

Another problem that arose over the course of the investigations was
the tendency for the teachers to give superficial descriptions and expect
most relationships to be linear. In the card sorting activities (Fig. 2,
for example), first attempts at classification tended to focus on the
obvious categories of representation (ie., graph, equation, table, verbal)
- and then a linear /nonlinear dichotomy. In the data collection activities,
the teachers in every case initially chose to describe the relationships as
linear. Subsequent investigation and guided reflection on the activities
were necessary for the teachers to begin to look for and distinguish
between various nonlinear relationships. The discussion around the
relationship between the length of a paper tube and the diameter of
the sarea on a wall seen through the tube provides a nice example
of this reflection. The teachers want to make the relationship linear.
Mentally extending the experiment, they discuss what would happen
‘[ the tube were extended indefinitely. A decreasing linear relationship
would imply the diameter ig eventually zero. The idea that the diameter
approaches zero without.reaching zero allows them to construct an
understanding of a function that is decreasing but not linear. |

Some of the teachers questioned the value of bringing “non-
mathematical” ideas into the mathematics classroom (e.g., issues
surrounding the uses of the United States census). They were
concerned that using data related to such areas as war and disease
might offend or upset some students. Considering implications of
mathematical models, however, was very important to the teachers
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becoming more reflective in their learning and teaching experiences
and challenging mathematical descriptions. Discussions on the Census
activities centered around uses of the census, such controversies as
undercounting, and the implications of assuming exponential growth
when the data from approximately 25% of the history of the United
States indicates otherwise. These issues follow the ideas of developing
critical attitudes (de Lange, 1987) and reflective knowledge in modelling
(Skovsmose, 1990).
Overall the teachers were positive towards the activities and felt that
they grew in their understanding of mathematics and teaching. Our
subsequent research provides evidence that the teachers involved "in
these modelling activities have become more open and flexible in
their understanding of mathematics. They also plan to use modelling
activities in their classroom as they begin teaching (Shealy et al., 1993).
Thus, modelling activities, particularly emphasizing the reflective
nature of developing conceptual models (Lambert et al., 1989) and, in
the last stage, reconsidering the just-completed process and developed
interpretation (Skovsmose, 1990), seem to provide the opportunities
teachers need to develop the more flexible and powerful understandings
of mathematics and teaching mathematics needed to support current
mathematics education reform (NCTM, 1989).
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SUMMARY

Credible assessment schemes measure evidence of student achievement,
as individuals or within a group over a wide range of activities. This
paper shows that item response modelling can be used to develop
rating scales for mathematical modelling. It draws on examples
and experience from the UK Assessment Research Group, which has
proposed comprehensive rating scales to assess mathematical projects
and investigations, from the development in Australia both of adult
literacy and numeracy scales and of assessment scales for architecture,
mechanical engineering and music.

1. HOW SHOULD MATHEMATICAL MODELLIN G BE
ASSESSED?

Ten years have passed since JCTMA1 in Exeter, UK during which
time there has been a'substantial increase in mathematical modelling
activity across all sectors. Modelling has been promoted to develop the
knowledge, skills and understanding in mathematics education within
a creative environment in which mathematics is applied (usually) to
real life situations. These strategies provided the means to increase the
motivation and the application of pupils and students from diverse
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backgrounds and across all sectors. In the course of introducing
modelling to the curriculum and from the resulting experience and
practice it is clear that the benefits of its introduction extend beyond
the bounds initially envisaged by the original aims. Of course our
engineering colleagues could have told us that students would learn
about project management, social scientists and psychologists would
say that personal development and group interaction would result from
modelling activities. The symbolic logic in the structure of mathematics
in one sense extends comrnunication skills within a rigorous framework
but its nature and its usé has often served to inhibit communication,
and therefore understanding, by undervaluing a students readiness to
make naive mathematical statements (Haines, 1980). Linguists would
recognise the importance of written and oral communication skills as
they are developed in modelling activities as a means to build the
complex structures of mathematics.

Mathematical modelling in the curriculum forms part of the wider
field of teaching and learning in mathematics for which Burton (1992,
p. 5) describes the two philosophical paradigms which dominate the
scene. A person holding the Absolutist Paradigm “believes in the
value of specified knowledge, which is accorded objective non-negotiable
status...This transmission mode of teaching leads inexorably towards
the kinds of testing and examinations which... focus on content and
skills and their reproducibility” of which the unseen timed written
end of course examination is one example. The outcomes from such
a restricted assessment are more predictable in terms of reliable judge
behaviour than using other tasks which allow for a multitude of student
responses.

Table 1 places judge behaviour on an arbitrary scale to represent the
view that certain assessment tasks taken in isolation produce consistent
indicators with respect to agreement between judges. Multiple choice
and traditional closed book examinations are held by the absolutist to
be effective measures of student achievement but they do not allow for
the comprehensive assessment of the full range of student achievement
and convey an inappropriate restrictive view of performances which
have value in mathematics. Other modes of assessment do perform just
as well, for example, teacher observation checklists can be an effective
and reliable measure (Table 1).

Burton continues, “an alternative approach is constructivist and sees
knowledge as relative both individually and societally. Far from
believing in objective truths, the constructivist assumes that each
person’s view of their world is individual”, but that it is imperative
that the individual can relate to the consensual domain of the social
environment. This “style of learning relies upon learner responsibility,
- group communication and the negotiation of meaning between and with
learners. It leads to a form of assessment which is reflective, that is
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self-questioning, rather than performance based. To be effective in the
widest possible sense, the evaluation and assessment strategies must
be those which are consistent with the social constructivist paradigm.”
(Burton, 1992, pp.. 5-6).

The stark choices between the absolutist and the constructivist
approach, reflect the position of mathematical modelling within
traditional mathematics courses in higher education. In order that
students may receive full credit for their achievements the assessment
scheme must be carefully integrated with the syllabus and the
pedagogic base. The problems in achieving this integral approach
should not be underestimated and were to some extent foreseen by Niss -
(1993, pp.50-51) in expressing the view “that most current assessment
modes are inappropriate to assess high level and complex mathematical
activities including applications and modelling. Appropriate modes
of assessment for such activities do exist, but they are incompatible
with- certain traditional requirements of assessment in mathematics.”
Niss offers no solution to resolve this incompatibility. A more positive
approach is taken by Burton (1992, p. 6} who proposes rules of thumb
to help in constructing or evaluating an assessment style. The list is
by no means exhaustive but it contains certain “truths” that should
be crystal clear to those who do not accept the social constructivist
approach, rather leaning towards an absolutist view:

1. that the assessment is appropriate to what
~ is being assessed:;
2. that the assessment enables the learner to

demonstrate positive achievement and to use
their strengths;

3. that the criteria for successful performance
are clear to all concerned;

4. that the assessment is appropriate to all those
being assessed; _

5. that the style of assessment blends with the

learning pattern so that it contributes to it.

In putting forward s comparable list of eight. criteria for creating
and appraising more extended assessment, practices, Eisner (1993,
p. 231) notes that views of assessment vary, stating that “if one
wants to identify winners in a race, it makes sense to have runners
start at the-same ‘place, and if this is not possible (and it is not
in academic contexts) they should at least run on the same track.”
But to identify ways in which students come to interpret, apply
and incorporate new knowledge into their current framework requires
assessment strategies which allow these features to be recogunised
and documented. The need for valid and dependable measures for
undergraduate teaching at universities is well known; in the United
Kingdom, internal and external reviews provided many examples of
the problems with assessment of projects and investigations (Haines,
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1992). The motivation to document these diverse and complex patterns
of learning and achievement in mathematical modelling is clear, and
the rewards, not just for the student, but in terms of quality and
accountability are high.

2. WHAT APPROACH IS TAKEN BY THE UK
ASSESSMENT RESEARCH GROUP? ~

When faced with a problem in mathematics, or particularly in
mathematical modelling, it is natural to begin with principles and
procedures that have been successfully applied in the past. Developing
areas of mathematics provide examples of real student achievement
which are not amenable to traditional assessments, or where they do
not address the issues, process, or complexity that should be part
of the assessment. For progress to be made the problem must be
recognised as of significance and alternative assessment procedures
must be developed. However, assessing complex mathematical tasks
crosses subject boundaries, driven by the need to provide accurate and
comprehensive profiles of students’ learning achievements.

Gathering a group of experts to discuss an issue and to provide advice is
a well-known strategy. A consensus may not be reached on all aspects,
but a meeting provides an opportunity for clarification of the issues,
exchanges of views, and establishing the extent of shared meanings. In
disseminating the findings of the panel, many bodies assume that the
assessment problem has been solved, but a number of issues remain.
For example: To what extent was a consensus reached? Where and how
did the experts differ? Did their responses cluster in some way? Were
some areas more controversial than others? Do these areas reflect a lack
of consensus among experts? Should students be penalized for agreeing
with the “wrong” set of experts? Where researchers and students do not
share a definition of mathematics it is a barrier to using mathematical
knowledge in a variety of contexts (Kouba and McDonald, 1991).

A research programme in United Kingdom universities (Haines, Izard,
Berry et al., 1993) has used a workshop approach to identify problems
in assessment, to attempt to reach a consensus on possible solutions
and to test these solutions to obtain evidence on their applicability and
suitability. The method adapts an algorithm developed by Griffin and
Forwood {1991) and Izard and Griffin (1991) for reporting adult literacy
and numeracy. The procedure, in a mathematical context, involves
the generation of descriptors, such as generalisations made and proofs
attempted, by the assessors, the use of those descriptors on a series of
rating sheets to assess actual work, analysis of the results to identify
discrepancies in shared meanings and revision of the descriptors. The
procedure (Table 2) followed identifies stages interpreted distinctively
by the research group. -
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Stage 1 Ezperts are invited to describe what they look for when assessing
student work. - ' ,

Comment Experts from twelve institutions in the United Kingdom
established the first workshop of the Assessment Research Group. They
looked at criteria and assessment procedures for mathematics projects
and investigations (Berry and Haines, 1991). In discussing the rationale
for assessment, they described how they recognise quality project work
presented by students. They provided indicators of competence for
use by those assessing projects and investigations. The indicators
are descriptors of student behaviour so that when competent judges
see a number of these descriptors, the observations provide evidence
of achievement. The group size should represent all likely shades of
opinion and have expertise from the complete spectrum of student
tasks. It is at this stage that shared meanings are achieved. '

Stage 2 The resulting list of descriptors is discussed and modified by
the group of ezperts.

Comment This stage produces refinements and establishes a
structure. Working in subgroups, participants identified three groups
of descriptors-those concerned with the activity of the investigation,
with integration of knowledge and skills to tackle a problem, and with
delivery of the report in oral and written form. Breaking the task down
focused the discussion on the perceived problems. Later workshops set
objectives for shorter projects and investigations resulting in a variation
in the groups of descriptors. '

Stage 3 An edited version of the list of descriptors is used to assess real
projects.

Comment The considered opinion of the participants at the end
of the first workshop in 1991 was such that at this stage they had
captured the essence of what needed to be done. This is a common
misconception in such cases, for there remained the question of evidence
to support this feeling and the procedure now examines this issue.
Both high and low quality projects must be considered since one
purpose of assessments is to distinguish between them and to award
consistently higher marks to higher quality work. Experts apply the
rating scale based on the descriptors to these real projects, recording
their independent ratings. Each has to assess more than one project,
and the lists of projects for assessment by each expert have to overlap
with those of the other experts. In this way several judges assess each
project. This procedure can be used on sections of work, for example
to check the appropriateness of the descriptors for oral communication
skills (Haines, Izard and Le Masurier, 1993).
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Stage 4 THem Response Modelling is used to examine variation and
discrepancies.

Comment An objective of the assessment is to differentiate between
students/projects where there are differences and to quantify those
differences. The descriptors should therefore discriminate: if there
is a range of achievement then each descriptor should help to find
these differences. The need to recognise differences.in examiners/judge
behaviour is frequently not understood. Using descriptors on actual
- student work allows checks on which descriptors work, which overlap
or are redundant, and which are controversial. Judge performance, in
which some consensus is expected but not perfect agreement, can also
be explored at the same time. The analyses uses commonly available
software tools. The FACETS program (Linacre, 1990) separates
judge behaviour from student performance and also may consider the
effectiveness of the descriptors used. The QUEST program {Adams &
Khoo, 1992 and Wilson, 1992) provides rating scale analyses showing
perspectives of student performance and descriptor effectiveness. In
each case results are shown on related linear scales which have the
same metric: the student achievement, the judge behaviour and the
demands of the descriptor continua. '

Stage 5 Review of the descriptors, the performance of the examiners
-and of the students.

Comment The list of descriptors is discussed in the light of the
analyses; examiners are advised of their performance relative to their
colleagues who helped develop the descriptors. Students may be
advised of the examiners views of their work and the relative difficulty
of the demands of each descriptor. Such advice focuses students on the
skills and knowledge they are required to demonstrate to achieve well
on the assessed tasks.

Stage 6 The list of descriptors is revised and submitted to further trials.

Comment This is part of the continuous process of the development
of comprehensive scales. Trials are required to establish the credibility
of the scales, to extend their applicability and to assist in the role of
staff development.

Stage- 7 Feedback and monitoring.

Comment Information (about how the projects really are assessed
rather than how they were intended to be assessed) is conveyed to
the ' examiners/teachers/students. Teachers and students are told
which targets are easiest and most difficult to attain. The issues of
leniency /stringency and shades-of-grey/black-and-white are raised with
the examiners. In each case, are changes needed? How are they to be
made? If we do “kidmaps” or similar {Adams & Khoo, 1992), how
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should non-fit be handled?

3. WHAT HAS BEEN ACHIEVED IN THIS
FRAMEWORK FOR ASSESSMENT?

The UK Assessment Research Group has constructed descriptors which
deal with both the process skills and the ability o integrate knowledge
and skills to tackle a problem. These descriptors are the main
parameters for what in mathematical modelling is loosely regarded as
content.

The descriptors reported in this paper deal with shorter projects and
investigational work in modelling, pure mathematics and statistics.
They do not distinguish between first year, second year, group or
individual projects, nor were they developed for the extensive final year
projects of many undergraduate courses, although this was the subject
of the 1993 Kells workshop. The modelling (M), pure mathematics
(P) and statistics (S) descriptors are the main parameters for content,
while those relating to “Communication” deal with the delivery of
the project, encompassing the written report, group work and an
oral presentation. The descriptors for written work (W) were derived
directly from a group workshop (Berry and Haines, 1991) while the
development of the oral descriptors (O) are discussed by Haines, Izard
and Le Masurier (1993). '

With each group of descriptors there is an accompanying commentary
which indicates the basis on which the judgment is to be made. In
order to use the system a given institution or course may select

M1-M9, W1-W9, 01-09 for modeﬂing projects
P1-P7, W1-W9, O1-09 for pure mathematics investigations
51-S8, W1-W9, 01-09 for statistics projects :

as appropriate and construct their own assessment form. The M, W
and O destriptors, while presented separately, are a compact package
of assessment tools for asséssing mathematical modelling completely.
Appendix 1 gives the full rating scale for mathematical modelling (M1-
M9) including the commentary. Appendix 2 gives the descriptors for
the 5,W and O scales omitting the commentaries, the P scale is given
below. The commentaries are used in the method to establish shared
meanings among the assessors and those being assessed.

The descriptors were developed from the premise that each of the three
types of project could be described by about 7 descriptors of common
activity, although driven by modelling projects they are identified most
effectively by considering the processes involved in a pure mathematics
investigation. These processes, which intuitively correspond to the
mathematical modelling descriptors (M2-MR) are:

i .
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P1. Identifies main objectives of the task
P2. Shows understanding of the ptoblem
P3. Tdentifies possible variables of interest

P4. Possible relationships between variables, or conjectures, explored
Pb. Makes a mathematical formulation of the problem or conjecture
- P6. Finds a solution or gives a proof

PT. Reflects on the problem

The mathematical modelling process requires two further key
descriptors,

M1. States objectives of the task, and
M9, Validates solution

being specific to mathematical modelling. Special skills were identified
in statistics projects, so that P2 is split into

S2. Formulation: simplifying assumptions made, and
S3. Carries out experimentation or surveys,

the remaining six P descriptors map directly to S1 and S4 - S8.

~The above prototype rating scales show what can be achieved in stages
1,2,3 and 4 of the Griffin procedure, the remaining stages involve
further development, testing and validation as a dynamic process for
sssessment. Hands-on experiences of using the oral scale, a draft
scale for posters and interpreting the results of the associated FACET
analysis are discussed in the next two sections.

4. - ASSESSMENT OF ORAL PRESENTATIONS AND
OF MATHEMATICAL COMPREHENSION AND
COMMUNICATION -

Workshops directed by: Sylvia Dunthorne (Open
: University, UK),
+  Ken Houston (University of Ulster, UK),
. and .
David Le Masurier (University of
(Brighton, UK)

In order to fully understénd data obtained from the workshops, it is
helpful to review the activities on which they were based. Sixteen
workshop participants reviewed the development of the oral descriptors
and applied rating scales (Appendix 2) to video recordings of student
presentations (Haines, Izard and Le Masurier, 1993). The modelling
problem was described together with the assignment given to the
students.
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The descriptors were applied to the presentation of one student group

measuring student achievement both individually and collectively as a

group. This first application, a trial run, exposed logistics problems
faced by the participants highlighting the need for shared meanings at
stage 1 of the Griffin procedure. A second group presentation was then
shown and the rating scales applied.

The practicalities of understanding the modelling exercise, interpreting
the meanings of the descriptors and the completion of the rating sheets
should not be underestimated. Different approaches were used for this
purpose, some completing the forms throughout the video presentation
while others preferred to wait until the end. There was general
agreement that the demands were far too great during the trial run,
but some improved their performance during the second presentation,
again the importance of the early stages of the Griffin procedure is
paramount. Further questions arise on whether the performance of
the students as perceived by the judges viewing the video is a valid
measure of real student achievement. For example, the technical skills
of the video production team and the direction of the camera team will
have influenced the judges.

Student achievement can be measured and assessed through a variety
of modes which have quite different aims and objectives and which
produce diverse outputs. An oral presentation is a quite different
matter from written comprehension and communication.

In a modelling activity it is common for students to prepare a written
report and in some cases to give an additional oral presentation. At
the University of Ulster, following such an activity, an innovative style
was introduced in which students were invited to communicate their
findings by a poster session. The fourteen participants at this workshop
were invited to assess posters using given criteria:

PS1 States the problem
PS2 Outlines the solution
P33  Reports the results
PS4  Uses hold headings
PS5  Good design layout
PS6  Uses illustrations
PS7T  Aesthetically pleasing

Although those assessing were experts in their own field, stage 1 of
the Griffin process had not been carried out in devising these draft
scales. The judges found the criteria easy to use but did not agree
on their suitability. The following analysis shows that It would have
been preferable to reach some consensus about the descriptors before
they were used to assess student work. There was also a difficulty
in that the descriptors themselves were used without an associated
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commentary such as that attached to the mathematical modelling
descriptors (Appendix 1).

The workshop participants also considered examples of comprehension
tests, students’ responses and their assessment so that the suitability of
this mode of assessment could be gauged and the extent to which the
particular examples given met the stated objectives. Houston (1994)
discusses the background to this method, but the need for good data
and experimentation in this area is clear.

5. Analysing And Interpreting The Qutcomes

Workshop directed by: = John Izard (ACER, Australia) and
Chris Haines (City University, UK)

The data provided by the workshops described above were analysed
separately by Izard using the FACETS program (Linacre, 1990). The
program models judge behaviour from student performance and also
allows for consideration of the effectiveness of the descriptors used. The
results from the analysis are shown on related linear scales; the student
achievement continuum has the same metric as the judge behaviour
continuum and the descriptor continuum.

ORAL PRESENTATIONS

2 : 3 6 1 4 5
Q l: St i l_-,ﬂ | o o |
o 0 0 0
low achievement , high achievement

Fig. 1 Six students placed on an achjevement continuum
, for oral presentations. Student 5 had the highest achievement

in this sample, student 2 was the lowest. Student 2 was almost
two standard deviations lower than the mean.

There were significant differences in the achievement of students in
oral presentations judged from the ratings. Interestingly, student 2
was judged to be the worst in this sample, consistent with the results
of Haines, Izard and Le Masurier(lggg)’ despite the fact that the judges
were novices in this type of assessment and had not been involved in
the development process. The ranking for the six students was also
comparable. Fig. 1 shows the spread of student achievement ratings

from their combined performance on each of the equally weighted oral
descriptors.
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Analysis of the behaviour of the judges for the oral presentations showed
there were significant differences in leniency/stringency between them,
they were consistent in their interpretation of the oral scales (reliability
0.79). This is quite surprising, since such a short time was given over
to establishing shared meanings between judges. Fig. 2 shows the
judges on a linear scale (in logit units), in the same metric as Fig. 1,
considered a leniency-stringency dimension.

H™ . 1
logit: 11 _1215) 14
5 191
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-2 -1 0 1 2
ienient stringent

Fig. 2 Sixteen judges placed on a leniency/stringency
continuum after assessing oral presentations. Judge 7 is
the most stringent; judge 13 is the most lenient; judge 7 is
more stringent than any other judge by at least one standard
deviation. Judges 3 and 12 mark to the same stringency, as
do judges 9 and 2.

Strategies in item response modelling, using student-judge data from
rating scales, seek to separate the influences of question complexity
from student achievement in the traditional test or examination
context. The corresponding emphasis in this type of study may be
considered as item demand separated from student achievement. Some
criteria are easier to meet than others; knowing which are easier and
which are, more difficult to satisfy gives us information about the
assessment process. The question is “Which descriptors being assessed
place the most (least) demands on the candidates?” taking into account
difficult; issues of ratings (or short-answer marks) presented as 0, 1, 2
or 3 rather than 0 or 1 as for scores on a multiple-choice test question.

Earlier studies (Haines, Izard, and Le Masurier, 1993) showed that
the group descriptors (5,6,7,8) were easier to achieve (less demanding)
than individual descriptors (1,2,3,4). Here, (Fig. 3), perhaps due to
the lack of shared meanings for the descriptors and the use of novices

as judges the distinction between the descriptors is not so clear. This
 finding warrants more investigation, particularly in the light of Eisner’s
comment (1993, p. 228) that assessment tasks need not be limited to
solo performance.

f
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Fig. 3. Oral descriptors placed on a less-demanding/more-
demanding continuum. Clearly descriptors 7 and 8, relating to
visual aids were perceived by the judges to be more demanding
than descriptor 3 on spoken English.

POSTERS
logit:
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Fig. 4 Ten students placed on an achievement continuum
for posters. Student 3 had the highest achievement in this
sample, students 9 and 2 were low &chievers, one standard
deviation lower than the mean.

The students eflorts at poster presentations were placed on an
achievement continuum for which there was a remarkable confidence
in their score, reliability 0.97 (Fig. 4). This high value is partly
a function of having a large number of judges, relative to a small
number of students. The results of the analysis of the behaviour -of
the fourteen judges for the poster presentations is displayed in Fig. 5.
Participation in the workshops overlapped, so that judges 1,2,4,10 and
13 took part in both the Oral and the Poster exercises. Whilst there
was consistency between the judges on this task (reliability 0.81), Fig. -
2 and 5 show that the leniency and stringency of an individual judge
may vary according to the task being assessed or the occasion on which
the task was assessed. -Notice that the relative positions of judge 10
and 13 are reversed in Fig. 2 and 5.

Fig. 6 illustrates the demand of the draft descriptors for poster presen-
tations, but does not describe the full story since there were two
misfitting ratings both due to redundancy between the descriptors
4 and 7. This highlights the need for careful development of the
rating scales making full use of expert panels, trialing and testing
through the stages 1 to 5 of the Grifin procedure. In addition the
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descriptors are clustered about the mean in terms of demand which may
point to difficulties in using them to discriminate between students.
In constructing tests it is desirable that the range of tasks places
variable demands on the student so that both low achievement and
high achievement is recognised. .
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Fig. 5. Fourteen judges placed on a leniency/stringency
continuum after assessing poster presentations. Judge 25 is
the most stringent; judge 10 is the most lenient. . Judges
1,2,4,10 and 13 are also placed on the continuum shown in
Fig. 2.

3
5
: 1
6 ‘il 2]]7
1: x--[-Qms--dﬂn--s----Q--x
less demanding more demanding

Fig. 6. Poster descriptors placed on a demand continuum.

5. Z(ARE WE ASSESSING COMFORTABLY?

The framework within which the assessment takes place is dynamic,
as the use of mathematical modelling has become more widespread so
too has the range of student outputs increased. There are exciting new
developments in the use of comprehension tests, posters, multimedia
activities and experimental laboratories each of which add a dimension
to the modelling activity. The experiences of the workshops and of the
UK Assessment. Research Group as a whole suggest that the methods
adopted for assessing mathematical modelling in context are taking us
-in the right direction. Eisner I(1993, p-231) uses an athletics analogy in
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establishing criteria for assessment, and this analogy can be extended
to the way in which a highly trained track athlete performs to a very
high standard. During a race if the athlete is feeling too comfortable
then there is room for improvement, the competitative edge comes from
just being across that threshold into an uncomfortable state. So it isin
implementing any of these schemes for assessment, critical self-appraisal
while assessing combined with a feeling of being just uncomfortable
with what is being done helps to maintain a healthy perspective.
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minimum . maximum
variation ‘ variation

examinations

muitiple choice %

»

traditional closed blook

open ended

>

projects

-

investigations in school

>

shorter projects

final year projects ‘ —%—

coursework

P

shorter simpie taks
extended tasks

>

oral presentations

x

group

individual

*

vivas ) X

teacher observati;')'hs checklist X

TABLE 1. Typical judge behaviour on a range of common asgessment
tasks. mathematical modelling activities tend towards a perceived high
variation in behaviour, for example in final year projects.
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experts describe
features looked
for in the task

|

projects assessed
using edited list
of descriptors

}

Item response
modelling analysis
using programs such

as FACES and QUEST

|

revise descriptors
and trial on real
projects

L

contiﬁued data
collection and
monitoring

/

descriptors of
student
behaviour

behaviour of
students/projects
examinations/judges
and descriptors;
weeds out descriptors;
examiner's relative
performance

concise list of
discrimating
descriptors;
how the projects were
assessed compared
to intentions;
targets which are
easiest/hardest to
attain identified;
issues of leniency/
stringency

147

TABLE 2. Methodology for developing sets of descriptors, - after
Griffin and Forwood (1991), adapted by the UK Assessment Research

Group.
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APPENDIX 1
MODELLING high low "ot
shown
M1 States objectives of the task O O 0O O 0O
M2  Identifies the main features of the task o o 0O o 0O
‘M3 Makes simplifying assumptions o o o o O
M4  Identifies possible variables of interest o o 0O g
M5  Explores relationships O o O o 0O
‘M6  States the mathematical problem O o O o O
M7  Finds solution O o 0o o 0O
M8 Iﬁterprets solution o o o o O
. M9 Validates solution O o o O o
COMMENTARY
Mi Understands the problem statement and expreses it as objectives
to be achieved.
M2 Considers features that are relevant to meeting the task's objectives.
M3 Makes realistic., reasonéble and relevant assumptions f:hat are within
competence. Justifies and explains assumptions made.
‘M4 - Selects, define§ relevant variables, attaches appropriate symbols, units.
‘M5 Relates the problem to existing knowledge, designs appropriate
experiments, if necessary, collects, summarizes and analyses data,
constructs empirical and/or theoretical models.
Mé Gives a clear statement of the mathematical problem.
M7 Selects and uses appropriate methods without error.
M8 Explains solution within context of original problem, revises model.
M9 Compares predictions of model with observation and/or common sense.
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APPENDIX 2

Statistics

S1 identifies main objectives of the task

S2 Formulation: simplifying assumptions made

S3  Carries out experimentation or surveys

S4' Identifies possible variables of interest

S5 Possible relationships between variables, or conjectures, explored

S6 Makes a mathematical or statistical statement of the problem or conjecture
S7 Finds a solution or gives a proof

S8 Reflects on the investigation

Communication Skills (Written)

Gives a free standing summary or abstract

Gives an introduction to the report

Structures the report logically -

Makes the structure of the report verbally explicit
Demonstrates a command of the appropriate written language
Visual presentation and layout complements logical structure
Makes appropriate use of references and appendices

Gives a concluding section in the main report

Gives a well reasoned evaluation

Comrmunication Skills (Oral)

01
02
03
04
05
06
o7
08

Descriptors O1-O4 are for individuals in a group or for individuals making

Rapport with the audience

Effective delivery

Command of spoken english

The structure gets over their main points

Clear explanation of the problem and its outcome
Overall planning and organisation

Appropriate use of visual and other aids
Technical quality of visual and other aids

an individual report.

Descriptors 05-O8 are group descriptors for the whole group or additional

descriptors for individuals making an individual report.
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Assessing Mathematical
Comprehension

Ken Houston
University of Ulster, UK

1. SUMMARY

This paper examines the rationale for comprehension tests in
mathematics, and outlines possible aims and objectives. It describes
the author’s experiences in setting and using such tests, and, outlines
the extent of their use in secondary and higher education in the United
Kingdom. References to articles used are given and there is a discussion
of student performance in taking such tests. The paper is based to a
large extent on articles published by Houston (1993 a,b), and it also
contains new research findings and further reflection.

2. RATIONALE.

Comprehension Tests in Mathematics are a means of developing and
assessing a student’s ability to read and understand a published article
on mathematics or an application of mathematics. They are a means
of encouraging students o develop independent learning skills which
will, in turn, bring students to a greater understanding of what they
have learnt.

The methodology employed by the author is to give to students a
copy of a published article which describes a mathematical modelling
activity. The students are asked to read the article carefully, to work
through it with pencil and paper, to note the problem statement,
simplifying assumptions made and the details of the model created.
They are to repeat at least one of the ca.lciula.tions and to reflect on the
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interpretation of results and validation of the model as reported in the

article. They are to question the assumptions made and conclusions

drawn. They are encouraged to discuss the article with their peers.

Then after a set time, usually three weeks, the students take an unseen
written examination which asks questions about the article. What are
the assumptions made? Are they justified? Are there any errors in the
calculations? and so on ... If the students are well prepared then the
questions will not come as a surprise to them. Nevertheless it is the
author’s experience that this test is a good discriminator, producing a
reasonable spread of marks. B _

Articles on some aspects of pure mathematics could equally well be used
in a different context and questions asked to draw out the student’s
understanding of the mathematical process involved.

This activity is useful because students will learn, not only the
mathemastical content of what they have read, but also they will have -
a greater appreciation of the mathematical processes involved.

If the article is about an application of mathematics, they will learn
something of the wider background of the problem being solved thus
seeing that mathematics is a powerful problem-solving tool, that it is
a living subject, and that it is relevant to everyday life. Furthermore
the process of preparing for the test encourages group discussion and
cooperation. -

There is now widespread international agreement that students should
be encouraged to read and write mathematics and to ask and answer
questions about mathematics.

In the United Kingdom, the proposed core syllabus for A and AS level
‘mathematics published by the School Examination and Assessment
Council (SEAC) contains the recommendation that pupils should be
able to “read and comprehend a mathematical argument or an example
of the application of mathematics” (SEAC, 1993).

Similar encouragement has been given in the United States of America
by the National Council of Teachers of Mathematics (NCTM). In
Standard 2 of Curriculum and Evaluation Standards for School
Mathematics, the NCTM recommends that pupils should be able to
“read written presentations of mathematics with understanding”, and
“ask clarifying and extending questions relating to mathematics they
have read or heard about” (NCTM, 1989). NCTM also recommends
that “assignments that require students to read mathematics and
respond both orally and in writing to questions based on their reading
should be an integral part of the (grades) 9-12 mathematical program”.

The same encouragement  and opportunity should be given to
undergraduate students, and this should start in their first year. It
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will, after all, only be a continuation of practices developed in school.
Professional mathematicians spend a lot of time reading other people’s
work, trying to make sense of it, making it “their own”, asking questions
about it and working out answers to these questions, looking for
mistakes and thinking about generalisations and other applications.
It is important that students are introduced to the way of life of the
professional as soon as possible.

Even those students—perhaps especially those students—who are not
going to be professional mathematicians should also be encouraged to
“read mathematics with understanding”. While they may never work
as creative mathematicians they will almost certainly use mathematical
models created by others. For such people to be fully informed citizens
and competent professionals in their own field they need to be aware,
at least to some extent, of the mathematical modelling process. They
should know that a model has been created and is being used in
a particular situation, that assumptions have been made which will
determine the usefulness of the model, and they should know something
about validation. (Houston and MecClean (1993) have suggested a
universal 6th form course which would help achieve this). They should
be prepared to criticise other people’s mathematics, and to make up

their own minds about things. They should observe critically what

other people have done and how they have done it, thus enhancing
their own learning of mathematical processes.

Comprehension Tests in Mathematics are one way of encouraging
students to “read with understanding”. They can be used to test &
student’s understanding, not only of mathematics itself, but also of
mathematical processes, whether processes of mathematical modelling
or pure mathematical investigation. They can be used to help students
observe critically what other people have done.

While it could be said of academic mathematicians that they are
well practised in “reading mathematics with understanding”, the same
perhaps, could not be said about school teachers or students {raining
to be school teachers. So these groups of people are another. target for
comprehension tests through either inservice or pre-service training.
It is important that teachers should sample, as far as possible, the
learning experiences that they will be giving their pupils. So teachers
and student teachers should be given comprehension tests to do. But
more than that, they should be given instruction and practise in the

setting (or writing) of such tests. There is also a new challenge here -

for mathematics educators in that they have to assess their students’
attempts to assess their pupils!

The author has used comprehension tests with senior high school pupils,

first year undergraduate students, and school teachers taking an in-
' service diploma course in mathematical modelling.
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3. AIMS AND OBJECTIVES

Houston (1993 a,b) has suggested that the aims of comprehension tests
are

(i) to encourage students to read, with understanding, a
mathematical article,

(ii) to provide students with an opportunity to demonstrate their
wider understanding of general mathematical processes, both
pure and applied, ‘

(iil) to encourage students to develop their skills of communicating
mathematics-reading, writing, asking and answering, and

(iv) to demonstrate to students that mathematics is a living subject
and is used in contemporary situations.

Some assessment objectives of comprehension tests are that students
should be able to:

(i) explain all statements like “it can be shown that...” or “it follows
from the above that ...” in the article,

(i) identify and explain all mathematical modelling assumptions
made in the article, ' '

(iii) make constructive criticisms = of assumptions made,

mathematical analysis and calculations carried out, inferences -

and deductions made, processes carried out,

(iv) locate any inconsistencies or incorrect deductions made in the
article,

(v) locate and correct any mathematical or typographical errors in
the article,

(v1) have some wider background knowledge of the situation
described in the article,

(vii) generalise the ideas or apply the ideas to a different situation.

4. SETTING COMPREHENSION TESTS

Articles selected for use in comprehension tests should provide scope

for most of the above objectives to be tested and the tests themselves
should include questions which address most of these objectives. The
tests can be set as timed, written examinations. This ensures that the
answers written on the day are each student’s own. For undergraduate
students two hotirs is a reasonable time and questions should be set to
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ensure that two hours is ample time. In their preparation to take the
test, students are encouraged to set their own test questions based
on the aims and objectives and on the questions about the article
that come into their mind as they work through it. Usually they
have been fairly good at this and most of the test questions are not a
surprise. Sometimes some of their questions are not asked and they are
disappointed; sometimes they gloss over some statement and miss its
importance. Another way of operating is'to give students the questions
at the same time as the article and to require them to provide written
solutions after a certain time, say three weeks. This way has two
drawbacks. First, it is possible for students to discuss the article and
the questions with their peers (which is to .be encouraged), but then
they could return shared answers which they have not made their own
{(which is not to be encouraged). This practise does not éncourage
deep learning, and, of course, it casts doubt on the validity of the
test. Secondly, students will not think so much about the article than
the,y would if the questions remain unseen. They will only do what
is necessary to answer the given questions. A comparison of results
obtained using these two methods with the same test and different
groups of similar students is given below.

When teachers or student teachers are asked to set a comprehension
test, then additional criteria need to be introduced. Not only do
they need to set questions which test most of the objectives, but
the questions must satisfy all the criteria of a good examination,
namely, they should be unambiguous, they should be do-able in the
time available, they should provide opportunities for all students, from
weakest to strongest to demonstrate what they “can do”, and they
should differentiate between weak and strong candidates. Furthermore
they should be asked to prepare specimen solutions as part of the whole
assignment and these are also assessed for accuracy and relevance.
Indeed these solutions provide valuable insights into the intended
purposes of the questions. )

The inservice groups of teachers were not asked to select an article.
Two suitable articles were supplied and they were asked to select one
of these. There were two reasons for this. First, selecting a suitable
article is a time consuming business and is probably the hardest part of
the exercise. Many are read and rejected before a suitable one emerges,
so it is useful to try to identify suitable articles throughout the course
of one’s reading of the literature. These students were part-timers and
did not have the time to undertake such a search. Secondly they did not
have the resources in their schools and would have had to spend a lot
of time in the university library. These obstacles will not be so difficult
to overcome when they come to use comprehension tests regularly in
their teaching.

Usually a skim read of a.n{a,rticle will indicate whether it will be
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suitable or not for a test. Having selected an article, it should then
. be worked through “with pencil, paper and computer”. Aspects
that lend themselves to questions should be jotted down, particularly
statements that the author makes about aspects of the modelling
process—assumptions, calculations, validation, revision, etc. Students
should be given the opportunity to make consiructive criticisms of
assumptions, methods, calculations and inferences. They could be
questioned about the wider background of the article and they could
be asked to apply the ideas to a novel situation. The articles discussed
in detail by Houston (1993 a,b) are “Handicapping Weightlifters” froni
Burghes et al (1982) and “Disc Pressing” from Edwards and Hamson
(1989). Other useful sources of articles are Giordano and Weir (1985),
Hart and Croft (1988) and Huntley and James (1991).

" 5. USE OF COMPREHENSION TESTS

Houston (1993 a,b) has been using comprehension tests in modelling
courses at the University of Ulster since 1986. Others including Berry
(private communication) and Goldfinch (1992), have also been using
such tests with their students.

Comprehension tests have been used in the Northern Ireland Further
Mathematics (Mode 2) Examination from 1987 to 1992. See Fitzpatrick
and Houston (1989), Greer and McCartney (1989), Houston (1989,
1992), McCartney (1990) and Holcombe (1982). They are also used
in the examinations for the Schools Mathematics Project course, SMP
16-19 Mathematics. See Dolan (1988) and Dolan et al (1991). These
examinations are for pupils in their last year of secondary education.

These authors report that comprehension tests are achieving their
stated aims and objectives. Houston (1989) reports that the circulation .
of the article to pupils in advance of the examination was “a catalyst for
group discussion and interaction”. McCartney (1990)-quoted a teacher
who commented on the “very cooperative spirit” in which his class had
prepared for the test. Houston (1993a) writes that the whole exercise
“seems to have met the aims ... in that students were encouraged (by
the threat of an examination) to read a mathematical article. They
demonstrated that they had read it with understanding and that they
had a reasonable grasp of the important aspects of the mathematical
modelling process”.

6. STUDENT PERFORMANCE

Houston (1993a) describes in detail how- his students answered the
questions in the 1992 test. There were three groups of students who
took the “Weightlifters” test in 1992, BSc Year 1, HND Year 2 and
Postgraduate Diploma (INSET course). The BSc students are better
qualified at entry than the HND students buf these students have a
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year’s greater maturity. The PG Dip students are all school teachers.
Their. performance in the test is summarised in Table 1.

Class BSc1 HND 2 PG Dip
No. in Class 17 14 16
Range of Scores 18-88  25-55 35-100
Mean Score 50.6 42.0 68.4
Standard Deviation 19.8 ’-9 21-6

Table 1: Percentage Scores on “Weightlifters” test

"The BSc students performed better on average than the HND students.
This was a little unexpected because the level of mathematics required
was not great. The HND class fared badly on questions which required
explanations. The class of teachers did best of all. This was expected
because they brought a greater degree of “worldly wisdom” to the
test than the younger students, and a greater command of written
English, which enabled them to give good answers to “explain” and
“criticise” questions. It is clear that mathematics students need both
good numeracy skills and good literary skills to function satisfactorily
in mathematical comprehension tests and in those aspects of their
professional and private lives where comprehension is required.

Student performance in the 1993 tests was reported at ICTMA-6 and
the scores are detailed in Tables 2 and 3. The article used was
E‘Insul)a.ting a House” by John Berry, taken from Huntley and James
1991).

Groups of students similar to those who took the 1992 test, took the
1993 at the University of Ulster (Table 2). Performances similar to
1992 were given by BScl and PG Dip students. The HND class of 1993
performed better. _

Class BSc1 HND 2 PG Dip
No. in Class 26 14 9
Range of Scores 23-85 35-73 43-83
Mean Scores 52.2 53.7 65.0

Standard Deviation 12.6 10.4 11.9

Table 2: Percentage Scores on “Insulating a House” Test
(University of Ulster)

However the interesting comparison is between the performance of
the 40 undergraduate students at Ulster with 37 BSc 1 students at
the University of Plymouth, where Berry (private communication) .
administered the same test but in a different way. Berry gave his
students the article and the test questions at the same time and asked
them to present written answers after three weeks. As would be
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expected, a higher mean score was achieved at Plymouth, but there was
a greater spread of marks and (almost) a bi modal distribution with 7
students scoring marks in the 30-39 range and 6 students scoring in each
of the ranges 70-79 and 80-89, This suggests that students can perform
better if they have an opportunity to discuss the actual questions
while writing their answers. It also suggests that some students were
incapable or lazy.

-

No. in Class 40 37
Range of Scores 23-86  5-95-
Mean Score 2.7 59.6

Standard Deviation 11.9 22.1

. Table 3: Percentage Scores on “Insulating a House” Test
(Comparison of Ulster and Plymouth)

To give readers an indication of the questions that can be asked in a
comprehension test, the questions relating to the “Insulating a House”
article are given in the Appendix. The article itself if too long to
reproduce here and readers are referred to Huntley and James (1991)
pages 81-96.

Houston (1993b) has also reported on how a group of teachers on an
INSET course fared in setting a comprehension test. While they set
questions to test the arithmetic problems in the article and questions to
extend candidates and take them into new situations, the most glaring
omission from their tests were questions relating to the mathematical
modelling process. This was disappointing considering these teachers
had spent a semester studying models and engaging in mathematical
modelling. They had not transferred these new ideas to the other
domain of activity, namely setting a test. - Perhaps they were too
recently introduced to modelling to achieve this, or their instructor
had not sufficiently emphasised objectives (ii) and (iii)!

7. CONCLUSION

This article has given a rationale for using comprehension tesis in
mathematics. It has outlined aims and objectives and described how
such tests can be constructed and used. It has discussed student
- performance in taking instructor devised tests and in devising tests
themselves. . :

It is concluded that these activities are meeting the stated aims,
particularly the aim of encouraging students to read, ask, answer and
write mathematics, with at least some understanding!
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APPENDIX

These questions relate to the modelling article “Insulating a House” by
J. 8. Berry, in Huntley and James (1991), pages 81-96, which should
be read in conjunction with this appendix.

The questions refer to the different lines of this article by number and
these need to be inserted by the reader for ease of reference.

line 1 is the line “7.1 The Problem Statement” on p. 81

line 50 is the last line on p. 82 ‘

line 100 is the line “17. thermal properties of walls” on p. 85

line 150 is the line “properties of materials are modelled by a simple
expression” on p. 87

line 200 is the line “Area of glass = Ag” on p. 90 .

line 250 is the line “Fig. 7.6 shows a graph of Pg/Pb against x” on p.
92 - : ‘
line 281 is the last line before “Exercise 17 on p. 95

(i) Inline 1 it is claimed that “heating a house or flat is an expensive
‘part of the weekly budget”. State whether you agree or disagree
with this statement, giving reasons for your answer. Include
appropriate facts and figures.

(ii) Referring to line 8, are there any other routes for heat escape?

(iif) Referring to Fig. 7.1, is the greatest heat loss per unit area
through the walls, the roof or the windows? Estimate areas for
these routes. . :

(iv) Referring to Fig. 7.2 and your answer to question (i), estimate
the cost of cavity wall insulation. Does this concur with your
other enquiries/experiences or the date in Table 7.17 Explain
your answer.

(v} Describe briefly the difference between “replacement windows”
and “secondary double glazing”. (Refer to lines 108-110).

(vi) Define “U-value®. (Refér to line 157).

(vii) List-the assumptions made in creating the heat transfer model.
Refer to lines 136 to 189).

(viii) Comment on the statement in line 205.
(ix) In line 221 why does it make sense to call P the “payback

period”? Explain how P could be defined differently to take
account of the hidden economic costs (e.g. cost of borrowing
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the capital, or loss of interest that might otherwise have been
earned). '

(x) Indicate how the value 0.0726 is obtained in line 235.
(xi) Correct the misprints in lines 245, 248.
(xii) Why do you think Ao > ha? '
Why do you think h. << h1 and hy? -
(Refer to the Diagram for Exercise 2)
(xiii) Do exercise 2.
{(xiv) Do exercise 4.

(xv) Which feature of double glazing does most to reduce the U-
value? (Refer to question xiv).
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Assessment and Mathematical
Modelling

James Hirstein
University of Montana, USA

SUMMARY

The SIMMS Project is making an effort to motivate and develop
mathematical topics through modelling situations presented in context.
The author serves as co-chair of the Assessment Committee, so this
paper reflects the Project’s approach to the assessment of mathematical
processes. The Project is described, a scheme for assessment is given,
and two examples from the curriculum illustrate the role of assessment
in mathematics instruction.

1. THE SIMMS PROJECT

To put our concerns in context, I will start with a brief description
of the project. The Systemic Initiative for Montana Mathematics and
Science (SIMMS), a cooperative project of the state of Montana and the
National Science Foundation (NSF), is funded through the Montana
Council of Teachers of Mathematics (MCTM). The project began in
October 1991. -

The goals of the SIMMS Project include: (1) to redesign the
9-12 mathematics curriculum (ages 14-18) using an integrated
interdisciplinary approach for all students, (2) to develop curriculum
and assessment materials, and (3) to incorporate the use of technology
in all facets and at all levels of mathematics education (The SIMMS
Project, 1993a). The SIMMS curriculum is currently being written
by secondary teachers for grades 9-12 mathematics. It is based in

!
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applied contexts, integrates the disciplines within mathematics, and
incorporates technology as a vital tool. '

The SIMMS project makes a distinction between the terms assessment
and evaluation. We consider assessment to be the collecting of data
at any level: the system with its institutions and rules; the curriculum
with its materials and methods; the classroom with its practices; or the
students with their achievements and attitudes. If someone chooses to
place a value on those results, then they have made an evaluation. For
the most part, we are interested in the reliable collection of data, so we
consider ourselves an assessment component. The student assessment
materials that are developed for use in the project are guided by three
basic purposes: .

1. Assessment informs students of the mathematical outcomes they
are expected to achieve. It is through assessment that students
learn what we think is important. If something is not assessed,
students will not bother to learn it. '

2. Assessment informs teachers of the instruction that must be
provided so that students can reach the desired outcomes.
Assessment must be done on a day-to-day basis, so it must be
built into the instructional materials.

3. The results of assessment are used to document the progress of
students in meeting the outcomes. We are not advocating the
end of grading, but we need models to translate assessment data
into evaluation marks. A Model for Instruction and Assessment
of Mathema.tlcal Applications

2. MODEL FOR INSTRUCTION AND ASSESSMENT

OF MATHEMATICAL APPLICATIONS-

Té discuss the processes encountered in mathematical apphcatlons, 1
will adopt a model that has proved useful in discussing the issues we
would like to promote by using mathematical modelling as a teaching
method. Although this model is not new, variations have been used
for over twenty-five years (see e.g., Klamkm 1968, and Galbraith &
Clatworthy, 1990), it has done such a fine job deﬁmng the issues
that I continue to rely on it. The model atternpts to illustrate the
relationships among the following processes:

Solve Solving the problem is the ultimate goal of an
activity. By definition, this is what makes the
question a problem.

Simplify It is usually easier to work with a simpler problem,
one that a student is more likely to solve. Students
must learn to recognise and constructproblems of a
similar form.
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Mathematize Students must construct a “mathematical model”
that is isomorphic to the real world situation.
The processes of communication, inquiry, and

reflection are appropriate for all of the other
dimensions.

General

Tlie first three processes mentioned are reversible, and each reverse
direction identifies a desired skill as important as the original:

The opposite of solve is to verify.
The opposite of simplify is to generalize.
The opposite of mathematize is to interpret. ,

Each of the processes listed (along with its opposite) can be regarded
as a dimension in a cube, resulting in the 3-dimensional mode] pictured
in Fig. 1. '

MATHEMATICAL SOLUTION TO
MODEL THE MATHEMATICAL
PROBLEM
MATHEMAle% /
REAL SOLUTION TO
WORLD SOLVE > THE REAL
PROBLEM PROBLEM
SIMPLIFY
SIMPLIFIED SOLUTION TO
MATHEMATICAL THE SIMPLE MATH
PROBLEM PROBLEM
SIMPLIFIED SOLUTION TO
REAL WORLD THE SIMPLE REAL
PROBLEM PROBLEM

Fig. 1 A 3—din{_1ensional Model
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Activities for approaching mathematics in context take place in a
variety of dimensions. The most elementary activities occur on the

corners, such as (1) to describe and classify, (2) to compare and order, -

(3) to join and separate, and (4) to group and partition. These
elementary activities can be done using “real world” objects like blocks
and sets or they can be done using “mathematical world” objects like
numbers and relations. :

More complex activities are represented by the edges of the cube.
One edge, the solving and verifying dimension, often employs the
traditional tools of mathematics: finding equivalent statements,
applying algorithms, validating empirically, and employing logical
(deductive) arguments. These processes, also, can be applied to either
“real” objects or “mathematical” objects.

The simplify and generalize dimension may involve changing modes of
representation, suppressing detail, and extrapolating or expanding the
domain to new situations. For example, we often ignore statistical error
and model a set of data using a straight line. It is important to ask
what is gained and what is lost by making such an assumption.

The mathematize and interpret dimension involves the construction
of mathematical models that reflect all of the essential properties of
the real situation. Several examples would illustrate the issues raised
along this dimension, but I will use just one. How do we define,
measure, and discuss the expectation of waiting time at a traffic light?
What variables are relevant? What variables can be ignored? One
possibility is to graph the length of waiting time against the time of
arrival. Fig. 2 shows a graph of the time spent waiting upon arrival
at a light that is red for 60 seconds then green for 30 seconds. Even
given this mathematization of the situation, we still must address the
relationships between the “real” and “mathematical” models. ‘What
is the question? What are we looking for? How can we represent the
“real solution” within the “mathematical model?”

Another critical point in mathematical modelling is the importance of
general processes: communication, inquiry, and reflection. These are
processes we want to encourage with mathematical modelling activities,
but they are relatéd to all of the dimensions. Communication is
required if students are to understand and explain their approaches.
A valuable technique that can be applied to both “real” and
“mathematical” situations is to explore and inquire about the
phenomena under investigation. Reflection is the process by which
we look back and refine the procedures that we have developed.

In previous discussions of this model (Hirstein, 1991), I have argued
that activity also takes place on the planes of this cube. I will give only
two examples because I think most of these issues have been discussed.
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waiting 60 1
time ‘
(seconds)

60 90
time of arrival (seconds)

Fig. 2 A Graph of Waiting Time

The first example concerns those people who are content to live in
the “back plane” of the cube, that is, in the “mathematical world”
containing only the simplify and solve dimensions. When I was a
young teacher, the only mathematics teachers I knew lived in that
plane. Real world uses of mathematics were not considered necessary
for the development of the mathematical systems and techniques that
were taught. Today, largely through the efforts of groups like those
represented at this conference, the percentage and the influence of
those who would ignore applications in the teaching of ma,thema.tlcs
are decreasing.

The second example concerns the issue of the “top” plane versus the
“bottom” plane. I used to argue that these planes are isomorphic,
so “Why be concerned with the difference?” 1 still think they are
isomorphic, but I now recognise that “simplicity” is a function of the
person perceiving the problem and that when novices are presented
with significant problems (and they should be), it is almost always a
good idea to play with a “simpler” version of the problem to get a feel
for the situation. For instance, studying lotteries generates some very
complicated problems because they deal with large numbers. However,
after exploring the situation with smaller numbers, students can
 develop strategies for explaining the mathematics of chance, expected
value, and the probability of winning. Theése concepts can then be
applied to analyse the more complicated “real world” problem.

3. AN ASSESSMENT SCHEME

If the processes of mathematics described in the 3-dimensional model
are to be valued by students, instruction and assessment will have
to reflect the new process outcomes. Alfernative forms of assessment

[
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can be developed to create a multi-dimensional profile of a student’s
development of the use of mathematical processes over time. New
instruments that include open-ended items, extended problern solving
situations, student demonstrations, real-world based explorations need
to be developed at all levels of school mathematics. Assessment
depends on a student’s communication of the modelling processes, on
a student’s approach to the problem, and on the ability to reflect
on the solution. Awareness of the modelling dimensions and their
assessment criteria will help students determine what is important and
make student self-assessment possible. The purposes of the following
criteria include identifying and improving student responses on these
dimensions.

The Physical Situation = The student understands the problem
context and its structure, and '
recognises subproblems.

Mathematizing The student uses an identifiable and
appropriate model on the problem
(may use tools such as diagrams,

: graphs, variables). :

Using the Mathematics The student makes' progress toward a
solution using the model. ,

Interpreting The student interprets solution(s)
and validates the mathematical model.

The chart pictured in Fig. 3 is suggested to record the marks for
individual responses assessed using the four criteria above. Scoring
guidelines, providing a set of examples that show a range of responses
together with instructional implications, need to be developed. The
sample responses are also useful in defining the issues that lead to a
consistent framework to assess student papers. :

4. TWO EXAMPLES FROM THE SIMMS

CURRICULUM

I will use two examples from the SIMMS Project Level 1 materials to
lustrate the nature of the activities and to discuss the issues that are
raised by our assessment objectives. The first example, shown in Fig.
4, is a Summary Assessment question from a module on the geometry
of reflections.

This example illustrates one change in the classroom, the use of
assessment in instruction. The students here are inventing the
questions. In one classroom, the teacher used this activity to motivate
the students to solve the problems they had written. One golf hole from
each student was photocopied and given to each team of four students
to solve the next day. Although several of the problems were relatively
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difficult, all of the students were challenged to solve the problems that
had been posed by their peers. Some of the golf holes designed required
innovative solutions, and often led to detailed analyses and discussions.

The Physical Situation
: [ ] ] >
No U Some parts ! Understands | Exiended
evidence " not undertood what must be dones ~ Understanding
Mathematizing
| ] ] ! }
' No apparent | Strategy ! Strategy could | Efficient,
strategy notworkable lead to a solution uses relationships
Using the Mathematics
{ . | ) 1 >
No | some I solution 1 Extends and
effort appropriate progress  essentially complete  generalizes a solution
Interpreting Resuits
{ 1 | ]
No l Attempted ! Appropriate l Appropriate
interpretation interpretation interpretation, may interpretation and
hegin validation validation

Fig. 3 An Assessment Chart

Activities like this one provide a wonderful existence proof about how
applications can enhance classroom discourse. However, this example
also illustrates another important issue about applications: model
selection. One teacher made this activity info a laboratory experience
in the corridor. Students used a wooden board to make a boundary,
then tried to bounce a golf ball off the board to hit a target. The
students were able to solve the problem using a strategy similar to
reflecting light in a mirror: find the reflected image, then draw the
straight line of light to find the point of intersection on the boundary.
In a later conversation, the teacher was asked if the same problem
could have been done using the baseboard of the wall in the corridor.
This extension had been considered and rejected because the students
would not be able to find the reflected image on the other side of
the wall. However, this additional restriction results in a beautiful
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extension of the original problem, even though the solution requires a
different mathematical analysis of the question.

Most miniature golf courses have holes requiring a person to hit the ball off at least one
wall to score a hole-in-one. And example is shown below:

éﬁ all

fee area

hole

Design and draw some miniature golf holes. There are three rules.

1. The drawing must be to scale, with all dimensions indicated.
2. Only line segments may be used for walls.
3. A tee area must be provided.

As you design hoies, sketch possible paths for a ball. For the final drawing of a hole,
however, do not reveal your winning strategy. Design the following types of holes:

a. A hole that looks simple, but where a hole-in-one is probably impossible.
b. A hole that looks difficult, but has a simple path for the ball.
c. A hole that has many poaaible paths.
d. A hole that requires a golfer to bank the ball off exactly three walls
to get a hole-in-one.

To test your designs, trade drawings with a classmate and try to sketch the paths of

. a hole-in-one. After the designs have been tested, present one of them to the rest of the
class. Use mathematical ideas and the language of this module to explain your design.

The SIMMS Project, 1983b

Fig. 4 A Reﬁectioh Example

The modelling process should be the critical object of instruction
here. The students’ desire to model the new situation should be
so prevalent that they do it automatically. Students must not feel
impeded just because a first model doesn’t work. As teachers, we
should welcome questions that force us (and our students) to seek
alternatives and gain confidence in our ability to mathematize one
situation with several models. The importance of these activities can
only be communicated to students by providing feedback on all four
dimensions of the assessment chart (see section 3).
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How far will 100 barrels of oil spread? To investigate this question, you may simulate an oil spifl
with water, You will need several containers and enough water to fill the container with the
least volume,
Each container of water models a spill &t some time while the oil is spreading. The same amount
of liquid is placed in each container. You will investigate the relationship between the area of the
base of a container and the height of the liquid,
a. Prepare a table with three headings: area of base, height and area «height.
b. Identify the container that holds the least volume. Determine and record the area
of its base and its height. Record both. Calculate the volumne of this container
{base area -height) and record it.
c. Fill the container having the least volume with water.
d. For each of the unfilled containers, determine the area of the base, record it in the
table and arrange the remaining containers from least base area to greatest. )
e. Carefully pour all of the water from the container with the least volume into the next
larger container. Measure and record the height of the water next to the base area
for that container. Repeat for each container. .
1. Graph area of base versus height.
g. Save the results of this exploration for use in the assignment.

The SIMMS Project, 1993¢

Fig. 5 An Inverse Variation Example

The second example, shown in Fig. 5, is an exploration that illustrates
inverse variation. It is taken from a module on oil spills. An oil spill is
a volume of oil that is spreading over a large area. The relationships
among the volume, the area, and the thickness of the oil are critical to
predicting the behavior of the spill. This activity uses a fixed quantity
of water in a variety of containers to investigate the relationships in the
situation, then later compares the model developed to the behavior of
oil.

This investigation results in data that are modelled by inverse variation.
The same quantity of water should be the product of the base area and
the height of the water in each of the containers. Measurement error
can lead to a wide dlscrepancy in the data. The solution of one group
of students is given in Fig. 4. These data were obtained from eight
cylindrical containers, then the students graphed the he1ght of water
against the base area of the container. ’

In the chart of Fig. 6, base area and height are direct measurements;
volume is the product of the other two columns. Errors in measurement
resulted in a wide variance in the “constant volume”, and even one
case where the function has two y-values for the same z-value. These
difficulties are common when data are collected by students, but they
are not often found in textbook data. Mathematics students are not
-sure how to approach these problems. In fact, when one student group
made an error placing one point far off of the curve, they concluded that
the inverse variation model was inappropriate. Science students are
encouraged to question the data, perhaps to check their measurements.
Mathematics students tend to accept the data without question (once
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shape basearea height volume
cylinder 9.62 8 76.96
cylinder 12.56 5.5 69.08
cylinder 19.625 3 58.875
cylinder 38.465 25 96.162
cylinder 15.89 3 47.67
cylinder 28.26 2 - 56.52
cylinder 19.625 35 68.6875
cylinder. 23.75 2.5 59.375

8 |

T m

T ==

s | | - |

0 i F } _ |

0 10 20 3o 40

Fig. 6 Student Response to the Oil Activity

collected), so the model must be wrong. The approach to a modelling
activity must include a validation of the model. Here again, these
goals, are communicated by scoring the class responses on all of the
dimensions of the assessment scheme.

5. CONCLUDING REMARKS

One of the most difficult aspects of assessment is getting it included
in instruction. Traditional mathematics materials have made it very
difficult to assess students’ higher-order thinking on a daily basis. There
are basically two difficulties:

1. Assessment usually comes at the end. You give a test, write the
number dowmn, and go on to the next chapter. This, of course, is
an exaggeration, but most assessment occurs after it’s too late
to do anything about it. We are trying to change this attitude by
placing assessment opportunities directly within the curricular
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maferials.

2. All students must be treated alike, so all students must have the
same assessment opportunities on the same items. Therefore,
new multi-dimensional assessment becomes over burdensome.
Teachers are rightfully concerned about doing “that much” with
every student, every day. We have to accept scoring schemes
that allow a teacher to look at a few students’ work each day
and rot:._%e questions among students. All students do not have
to respond to the same questions, as long as all students have

an oppo/rtunity to exhibit the same achievement.

Our a.ssessmefr{t writers have suggested a scheme that addresses four
} dimensions of the mathematical modelling process. We tried to keep the
\ilgl;)er of dimensions small, but not one. If we want students to achieve

something, we know we have to assess it Only through our assessment

do students come to know we think something is important. But it
is equally critical that we use assessment to find out what students
can and cannot do. The results of assessment must feed back into our
instructional decisions. Now that we are collecting examples of student
work from our project, we are beginning to ask teachers to help
determine the criteria that represent a shared meaning of assessment.
This alone gives us an optimistic feeling that change can happen.
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The Assessment of Core
Skills in the Context -
of Mathematical Modelling '

Andrew Battye and M. aggie Challis

- Sheffield Hallam University, UK

 SUMMARY .

Current initiatives in the UK, within both education and employment
sectors, have aimed at improving skills of young people through
the definition of occupational competence. National occupational

- standards have been developed that seek to ensure that employees and

potential employees possess the necessary background knowledge in
their chosen area of work, but can also demonstrate a range of core or
common skills.

The BTEC (Business and ‘Technology Education Council) Higher
National Diploma in Computing Mathematics at Sheffield Hallam
University, is one course in which an assessment strategy has been
developed that ensures that students demonstrate both mathematical
and core skills.

This fjaper describes, through the use of a case study, how a new
assessment strategy has been introduced into the modelling unit
undertaken by students towards the end of their first year on the course.
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1. BACKGROUND
Common Skills in the National Context

Traditionally, qualifications in higher education have been knowledge-
led. Courses have been built around subject areas, sometimes divided
into units or modules. The current growth of combined studies courses
. using the “pick and mix” philosophy of Credit Accumulation and
Transfer (CATs) is reinforcing the idea of a course being a collection
of possibly disparate units of different, specified levels.

Traditional assessment methodologies have been built around time
constrained unseen examinations, which examine only a proportion of
the defined syllabus, and require only a percentage of “correct” answers
in order for the student to pass the exam. Increasingly, however, there
is a move towards an assessment process that enables examiners to

assert that a person who has successfully completed a unit has been

assessed and found competent in all the specified outcomes of that unit.
This movement towards outcomes-led assessment has its roots in three
major areas:

a) the demand by employers for a more ﬂemble and relevantly
qualified workforce

b) the establishment by the Government of the National Council
for Vocational Qualifications

¢) the recognition by examining and awarding bodies-such as
BTEC-that qualifications need to incorporate more than subject
specific skills and knowledge alone if the current needs of
employers are to be met

‘Employer organisations such as the Confederation of British Industry
(CBI) and Chambers of Commerce have often called for employees to
be better qualified in

communication skills
numeracy skills
.keyboard skills

in addition to the occupationally specific skllls around Whlch
qua,hﬁcamons have always been built.

The National Council for Vocational Qualifications, since its
establishment in 1986, has been developing National Vocational
Qualifications (NVQs) founded on defined national standards of
competence in specified occupational roles. More recently, the Council
has also developed General National Vocational Qualifications, which
describe the skills and knowledge which underpin a range of roles within
a given occupational sector. In both developments, the need for skills
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beyond those that can be described in the performance of tasks inherent
in the roles themselves, has been recognised. In the context of GNVQs,
distinct units of ”core skills” are described and must be assessed in
order for the qualification to be awarded (Oates 1992). These are:

self-management
group and team work
communicating
problem solving
numeracy

information technology

In the schools sector, the Schools Examination and Assessment Council
(SEAC) and the National Curriculum Council (NCC) who advise the
Government on curriculum content have proposed:

“from 1994, A levels should include ‘common learning outcomes’ in
problem solving, personal skills, communication skills, number skills,
IT skills and foreign language skills.”

In terms of the HND in Computing Mathematics, and in particular,
the Mathematical Modelling unit, the greatest influence has been that
of BTEC. This awarding body insists that every student, on each of
their validated courses, must be assessed in what they term “common
skills”. These common skills are afforded such importance that failure
in any one of them would mean the withholding of the award.

The BTEC common skills are grouped into seven generic areas:

managing and developing self &
working with and relating to. others
communicating

managing tasks and solving problems
applying numeracy

applying technology

applying design and creativity

These are further subdivided into 18 more specific competences.
For example, the ninth competence, which lies in the area of
“communicating” is :

present information in a variety of visual forms

Each common skill generic area is defined bSr
general skill area aims '

and each element within a generic skill area is defined by
performance criteria and

3
i
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range statements

Full definitions can be found in “Common Skillg and Core Themes”
(BTEC 1992).

Mathematical Modelling‘

One key to the assessment of mathematical modelling is to recognise
that the BTEC common skills identified above are implicitly present
in all the stages of the modelling process, one version of which is
portrayed in figure 1 (Edwards and Hamson 1989). Modelling is often
simplistically viewed as this sequential loop but is more usually an
iterated process with many intermediate returns from one stage to an
earlier stage and sometimes back to the customer. '

Real world
custormner with
a problem

- ldentify the
T nature of

the problem \
2

Formulate a
6 mathematical
Report description/mode!
back to the . '
customer 3
\\..\ Solve the
"\\ mathgamatical
S model
s Compare the ’ —

solution '
with reallfty\ 4| Interpret the
— mathematical

solution

Fig. 1
It may be argued that the most important stages are step 1 and step 6.
These are the processes that are critically dependent on communication
skills. Within the rest of the loop, we can also identify the need for

a) research skills (stage 1)
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b} modelli:slg skills — identifying the mathematical problein (stages
1 and 2

c) mathematical skills — solving the mathematical problems (stages
3 and 4)

d) IT skills (stages 3 and 4)

e) evaluative skills (stage 5) -

f) investigative skills — asking “what if” questions (stages 2,3,4,5)
Modelling therefore incorporates the need for communications at
the “front end” of the process of identifying the problem; the -
mathematics/IT area of making assumptions, buﬂdmg models and
reaching solutions; and, finally, communications again in reporting
back.

2. AIMS OF A MATHEMATICAL MODELLING UNIT
Modelling is a holistic activity. Its aims include

a) motivating interest in quantitative methods

b) developing group and/or team work

c) integrating and developing IT dependent skills

d) researching information sources using appropria.té IT

e) collecting data

f) identifying assumptions and building models

g) applying mathematics (or even numeracy!)

h) communicating verbally and in writing

i) evaluation and critical analysis of solutions

j) improvement of earlier models

k) suggestions for future work

1} applying solutions predictively
This extensive agenda of skills and aims is comprehensively addressed

in the following case study.
I
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3. A MODELLING CASE STUDY OUTLINE
Population With Age Structure

Doucet and Sloep (1992) in their chapter on population modelling
include a simple example of modelling populations with age structure.
A population may be classified into age groups for each of which the
birth and survival rates are known with respect to 4 given time period.
If these rates are assumed constant, the numbers of individuals in each
age group at each time step 7 + 1 in the future can be predicted from
the group sizes at time step i by .

Nipp = AN; 1)

where

N is the vector whose components are the numbers of individuals
in each age class

1 is a time step counter

A is the Leslie matrix or projection matrix for that particular
population.

The matrix A contains the birth rates for each age class in the first row
and the death rates for each age class in the lower sub-diagonal.

A model such as this is the simplest model that could be used to predict
the numbers in human population age groups. This would be of value,
say, if a government were interested in planning future requirements
(e.g. teachers, doctors, state pensions ...).

Given in Appendix 1 is the case study as given to students on the
mathematical modelling course. In summary the task is:

produce a model of the England and Wales population
growth taking into account the birth and death rates
that vary according to age

and use it to develop models that could be used to help in planning
future requirements. Note also that the problem specification asks each
student to submit a BTEC Log Sheet (Appendix 2) which is the
reporting mechanism for common skills, along with the more usual
group report.

Delivery Mechanism

The case study is deliberately open ended. However, some direction is
given to students. At this stage in their course, the students already
have a range of experience and knowledge that includes:
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a) all the necessary mathematical skills and knowledge
b) library skills

¢) report writing skills

d) earlier modelling activities involving group work

é) spreadsheet skills

The modelling exercise is intended to be completed in a period of
four weeks, with four hours a week specifically timetabled towards the
activity.

In the first session, the mathematical background is presented. Groups
of 2 or 3 students then set off to search out relevant data and return
when necessary for additional support. The building of the simple
internal models at each stage was relatively simple, but there was a
need to give help and reassurance to build the students’ self-confidence.

The solution of the basic model is the repeated matrix calculation using
equation (1). This is easily accomplished using any spreadsheet. The
result is a series of tables and graphs of the sizes of the populations in

each age group in the future.

Subsequent questions are answered by building additional models
depending for their input data on the results already ‘calculated.

4. ASSESSMENT

The assessment of the activity is based on both the report and
the completed log sheet and necessitates the disaggregation of the
mathematical content from the processes used in carrying out the
exercise.

The report presented by the students should demonstrate that
appropriate models have been built, that correct numbers have been
calculated and suitably presented, and that appropriate conclusions
have been drawn. This element of mathematical activity is given scores
or grades in accordance with the marking scheme of the unit.

When the case study was introduced, the students were also informed
that they would have to:

' a) find appropriate data sources
b) think about their problem

¢) formulate ways around the problems as they arose




182  Assessment - [Sec. C

d) think about how to report their numerical findings
e} find interest and application in their mathematics
f) work effectively in groups

g) use skillfully the IT tools availaBle

h) write reports

i) make verbal presentations

The report should reflect their efforts in these areas. It is from this
written evidence that the claims made on. their log sheets to the
specified common skill competences is assessed by the tutor, possibly
with formative feedback entered into the tutor comments section.

5. ISSUES OF WIDER CONCERN

Throughout their course, it is emphasised to students that these skills
are not only appropriate in the mathematical modelling unit of their
course, but are integral to their studies in higher education. Although
the above skills were specified to these students in the context of this
exercise, students are permitted to claim particular competences at any
time during their course, using any appropriate evidence. They do this
by submitting BTEC log sheets. '

This student-led approach to assessment has implications
for all tutors involved in teaching and assessing BTEC
programmes. In order to ensure that the approach to
assessment is adopted across whole courses, it is necessary
to: ensure that subject tutors are explicit about what they
think is involved in each assessed task and to identify which
.aspects will be assessed

ensure that each student submits, for each piece of

assessed work across all units, a completed Common
Skills Log Sheet (Appendix 2)

When marking the piece of work, tutors will have the evidence (the
work presented by the student) in support of the student’s claim to
competence as described on the log sheet. The submitted work may
clearly provide sufficient evidence for the claim to be justified, in which
case the tutor simply records this on the log sheet. If it does not, then
the tutor records appropriate comments on the log sheet, thus enabling
the use of the log sheets for both formative and summative assessment
purposes.

Fundamental to the process is the principle that it is the responsibility
of the student to present both the evidence and the log sheets, and to
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retain the latter throughout their whole course of study. In this way, a
continuous profile of demonstrated competence in each of the common
skills elements is generated by each student. The cumulative results
of the common skills log sheets are entered onto the BTEC Common
Skills Progress Profile (Appendix 3). This final document summarises
development in all the skill areas, and is the basis on which the final
common skills grades are awarded. Further details of this process can be
found in Common Skills and Core Themes, Implementation Guidance
(BTEC 1992).

6. CONCLUSIONS

In accordance with the perceived needs of present day society, common
skills are becoming an explicit underpinning theme of higher education
in the UK. Employers are distinguishing between potential candidates
for jobs on the basis of more than occupationally. specific knowledge
provided by traditional named qualifications. The development of
competence in the so-called common skills is therefore becoming of
increasing importance, particularly in first degree courses. The need
to undertake this work is also becoming increasingly important with
the rapid growth in participation in higher education, and the further
expansion of combined studies qualifications.

The explicit development and assessment of common skills can be
integrated throughout all units of a course of study. This becomes
practical and feasible by using a mechanism like the log sheets and
profile forms. Such an approach gives the added advantage of providing
a focus for formative assessment through appropriate feedback, whilst
increasing the emphasis on student centred learning.

However, implementing this system has implications across the range
of delivery mechanisms of any given programmes. While students are
increasingly entering higher education with some experience of self-
directed learning, there is still some reluctance to engage in activities
that are not obviously, in their minds, connected with the subject
content of their course of study. Such reluctance to engage in the
process of developing common skills may be compounded by staff
who are themselves unsure of the demands that will be placed on
them. Many of the tutorial staff in higher education have been taught,
and have themselves taught, in a system that has not previously laid
emphasis on assessment to specified criteria. This, therefore, represents
one challenge to them. However, when these criteria describe areas that
have not previously been addressed by these tutors, but which now need
to be integrated into the subject matter with which they are familiar,
there may be practical and emotional barriers to be overcome.

In the mathematical modelling course at Sheffield Hallam University,
a teaching and assessment model lllas been developed that has risen to
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- the challenges and has, in great part overcome them. The lessons that
have been learned are: : ' _

a) that it is possible to integrate commeon skills into a case study
based on mathematical modelling

b) that students will respond to the need to identify and develop
common skills, and will take responsibility for making claims to
competence in these areas '

c) that busy staff need persuading of the valué of their involvement
in the teaching and assessment of common skills"

d) that the value of undertaking teaching and assessment of
common skills becomes apparent to both students and staff when
these skills are used successfully in the job market.
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APPENDIX 1

The overall task is to produce a model of the growth of the population
of England and Wales taking into account the birth and death rates
that vary according to age. This model is then to be run to predict
the numbers of individuals in each of the separate age classes for some
yearws into the future. The aim is to be able to plan future service
requirements as identified below. Your aim is to complete the following
tasks.

1. Use an appropriate information source to estimate the

nuinbers, birthrates, survival rates of people in the age -

classes 0-7, 8-15, 16-23 etc. for the population of England and
Wales for any reference year from the 1980s. This will itself
involve elements of modelling and will need to be explained in
your report.

2. Construct the “population iwth age structure discrete time step
mode” taking the somewhat crude age classes given above ablong
with a basic time step unit of 8 years.

3. Use a spreadsheet (or otherwise calculation to find the numbers
for each age class over the next 200 years. ‘

4. Develop models for the numbers:
i. in full-time education
ii. of teachers required for (i)
iii. in post-16 education
iv. available for work
v._' of people over retirement age
and apply each of them over the next 64 years.

In each case state clearly the assumptions you make giving
Justifications for them and additional references if appropriate.

5. Present the results obtained in 3 and 4 above in graphical form
and give general descriptions of their pertinent features.. Where
possible, compare your results with any other predictions you
can find.

6. Write up your activity as a group report. It is not necessary to
word-process everything though this can aid legibility. As well as

any discussion of results obtained, include a conclusions section
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i .
assumptions, accuracy, usefulness, validity, improvements to the
mdoels, etc.) and also, briefly, the group working aspects of the
activity.

Finally, indicate what you consider a fair breakdown of the
marks should be {e.g. a group of 3 putting in unequal efforts
could request that the available mark [60% say] was split in the
ratio 1:2:2 [36%, 72%, 72%)]).

Submit individual common skills log-shéets. The claims of
competence should be supported by aspects of the written
report.

MARK SCHEME

The report as a whole 10%
Part 1 ' 20%
Parts 2 and 3 5%

Part 3 5% .
Part 4 1) to v) 5% each
Part 5 20%
Conclusions 15%

Doucet, P. and Sloep, P. B. (1992) Mathematical Modelling in the Life

Seiences. London: Ellis Horwood.

Central Statistical Office, Annual Abstract of Statistics.

Population Trends

Demeographic Year Book
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DATE:

OUTCOMES REVIEWED AT THIS STAGE

SUPPORTING EVIDENCE .

TUTOR’S COMMENTS

MANAGING & DEVELOPING SELF
1. Manage own roles and responsibilities.
2. Manage own time in achieving objectives,
.3. Undertake personal and career development,
4. Transfer skills gained to new and changing
situations and contexts,

WORKING AND RELATING TO OTHERS
5. Treat others'values, beliefs and opinions with
respect.
6. Relate to and interact effectively with individuals
and groups.
7. Work effeciively as a member of a team.

NAME:

COMMUNICATING

8. Receive and respond to a variety of information.

9. Present information in a variely of visual forms.

10. Comrunicate in wiiting. :

1. Parficipate in oral and non-verbal comranication.
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NAME:

QUTCOMES REVIEWED AT THIS STAGE

SUPPORTING EVIDENCE

TUTOR’S COMMENTS

DATE:

MANAGING TASKS & SOLVING PROBLEMS
12. Use information sources.
13. Deal with a combination of routine and
non-routine tasks.

14. Identify and solve rotitine and non-routine
problems.

APPLYING NUMERACY _
16. Apply numerical skills and techniques.

APPLYING TECHNOLOGY

16. Use a range of technological equipment and
systermns. :

APPLYING DESIGN AND CREATIVITY
17. Apply a range of skils and techriques to develop
avariely of ideas in the creation of new/modified
products, services or situations.
18. Use a range of thought processes.
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BTEC Gommon Skills: Progress Profile

[Review Dsie
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Programme
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COMMUNICATING
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and groups
Yes 7 Work effectively as a member of a team
COMMUNICATING
8 Receive & respond to a variety of information
Yes 9 Present information in a variety of visual forms
Yes 10 Communicate in writing

MANAGING TASKS & SOLVING PROBLEMS

Yes 12 Use information sources .
Yes 13 Deal with a combination of routine &
’ non-routine tasks '
Yes 14 Identify and solve routine non-routine
" problems

APPLYING NUMERACY
15 Apply numerical skills & techniques

APPLYING TECHNOLOGY

16 Use a range of technological equipment
and systems

APPLYING DESIGN & CREATIVITY

17 Apply a range of skills & techniques to develop
a variety of ideas in the creation of new/modified
products, services or situations
Yes 18 Use a range of thought processes

POPULATION MODELLING WITH

AGE DISTRIBUTION

191

The overall task is to produce a model of the growth of the population
of England and Wales taking into account the birth and death rates
that vary according to age. This model is then to be run to predict
the numbers of individuals in each of the separate age classes for some
years into the future. The aim is to be able.to plan future service
requirements as identiﬁed{ below. Your aim is to complete the following

tasks.
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Use an appropriate mforma.tlon source to estimate the numbers,
birth rates, survival rates of people in the age classes 0-7, 8-15,
16-23, etc. for the population of England and Wales for any
reference year from the 1980’s. This will itself involve elements
of modelling and will need to be explained in your report.

Construct the “population with age structure discrete time step
model” taking the somewhat crude age classes given above along
with a basic time step unit of 8 years.

Use a spreadsheet (or otherwise) calculation to find*the numbers
for each age class over the next 200 years.

Develop models for the numbers:
i} in full-time education
ii) of teachers required for i)
ili) in post-16 education
iv) available for work
v) of people over retirement age

and apply each of them over the next 64 years. In each case
state clearly the assumptions you make giving justifications for
them and additional references if appropriate.

Present the results obtained in 3 and 4 above in graphical form
and give general descriptions of their pertinent features. Where
possible, compare your results with any other predictions you
can find. A

Write up your activity as a group report. It is not necessary to
word-process everything though this can aid legibility. As well as
any discussion of results obtained, include a conclusions section
which is to reflect both on the technical aspects (eg. reviewing
assumptions, accuracy, usefulness, validity, improvements to the
models, etc.) and also, briefly, the group working aspects of the
activity. Finally, indicate what you consider a fair breakdown of .
the marks should be (eg. a group of 3 putting in unequal efforts
could request that the available mark [60 % say] was split in the
ratio 1:2:2 [36%,72%,72%]).

.
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7. Submit individual common skills log-sheets. The competence
claims should be supported by aspects of the your written report.

MARK SCHEME

The report as a whole 10%

Part 1 '20%.
Parts 2 and 3 5% each
Part 4 1} to v) 5% each

Part 5 20%
Conclusions 15%
REFERENCES
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Authentic Applications of
Mathematics

Lars Ebbensgaard
Lemuig Gymnasium, Denmark

SUMMARY

It is well-known that there is a common need for textbooks on
mathematical models and modelling. The Association of Upper
Secondary School Mathematics Teachers in Denmark therefore
contacted the trades and industries to investigate if any projects
involving math models and modelling applicable at the upper secondary
school level were available. Very positive answers were received and s,
working group was established to adapt and publish the projects. Until
now two textbooks have come out of this meeting between industry and
school. The process and the resylt of this work will be the subject of
this contribution,

1. INTRODUCTION

The math-curriculum in the Danish upper secondary non-vocational
education of course contains the common main topics of mathematics.
In 1988, however, it was added that the pupils should work with three
so called aspects:

Aspects (both B- and A-level)

1. The historical aspect ’
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2. The aspect of model and modelling

3. The internal structure of mathematics.
(The Danish Ministery of Education)

This new curriculum was thoroughly referenced at the ICTMA-4
Conference, Hermann and Hirsberg (1991). The engagements in these
aspects have been very vivid and have caused much activity.

Literature on the aspects fits only with difficulty into the current
textbooks. But we saw great pleasure of experimenting by the pupils as
well as by the teachers, who jointly should find and choose the content

~ of these aspects.

As far as the model aspect is concerned, it came to mind to study how
mathematics is actually used in the trades and industries. It became
common that the subject of mathematics was involved in excursions to
factories, treatment plants, agricultural farms etc. in order to study
how mathematical thinking was used at the different places.

2. COLLABORATION WITH THE INDUSTRIES ON
THE PRODUCTION OF TEXTBOOKS.

These initiatives opened the way for very interesting mathematics
and many mathematical models. And it turned out fo have a great
secondary profit, namely that the well-known question, “What is the
use of all this?” was given a serious answer. So the opening to the
surrounding society, as a supplement to the classical math-education,
was extremely fruitful. - '

The Association of Upper Secondary Schoolmath Teachers in Denmark
now applied to the trades and industries to investigate if any projects
were available, where mathematical models and modelling are used-in
a way that they could be used in the teaching of math in the upper
secondary school. Very positive answers were received and a working
group was established to adapt and publish the projects.

The adoption turned out to be a difficult task indeed, but because of
good will from the companies, it also turned out to be exciting and
inspiring.

The math-teachers naturally were extremely happy to see “their”
mathematics used so directly. No less was the pleasure of the experts
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in the companies in telling about their work. In their everyday life
they lacked the dialogue with other people on mathematical issues.
They were not used to having such interested discussion partners in
the mathematical field.

The managements in the companies offered time and resources to the
engineers, so there was time enough to discuss and work out the idess.
As a result, four of the projects were issued as a textbook with the title
Authentic Applications of Mathematics, Touborg (ed) 1992.

One part of the bo-ok deals with the chemical industries. Here the -

concept of distillation is important, and we found that this matter
should have a publication of its own, Distillation, Ebbensgaard et al.
(1993). ' :

The contents on chemica] ma.ttérs were made in collaboration between
a high school (Lemvig Gymnasium) and the company of Cheminova
Agro.

This collaboration between the educational sector and the industries
has been very fruitful. The high school has to a higher degree been
absorbed in the surrounding society, which again has had a positive
impact on the attitude of the users of the school. The parents, the
pupils as well as those on the board have found this initiative very
relevant and have welcomed it. So it can be very much recommended
to all schools and math-teacher groups tomake such a contact with the
industries. - :

The publications mentioned have been the basic material for an in-
service course with 35 math-teachers arranged by the Math-association.
In a further perspective, I think that the collaboration between high
schools and the trades and industries could promote in-side education
and job-rotation in the entire field.

One of the engineers in this collaboration expressed the following in the
yearbook of the school, “The postulated ‘gap’ between the educational

- sector and the trades and industries did not appear.”

At the time of publication, the math-association addressed itself to the

‘Danish Employers’ Association, who had a clear interest in supporting
- the youngsters’ work with science and mathematics. The Danish

Employers’ Association offered financial support to the publication and
I




200 Industrial C/lo]laboration [Sec. D

‘ promised to be instrumental in facilitating contacts between the trades
and industries and 'interested senior schools.

3. THE CONTENTS OF THE PUBLICATIONS.

The first example in the book shows the construction of a;.‘g'rowth model
for trout in fish ponds. The optimal way of feeding the fish is found by
constructing a growth model. Computers are important here.

The next example goes through some calculations in connection with
filtering smoke from refuse disposal plants.. Analytic functions are
found to fit functions known from tables.

The third example demonstrates the application of statistical methods
in process control.

The fourth example goes through the calculations used in dixﬁensioning'
a system for the production of acetyle-acetone. '

The Distilla.tibn—publication tries
— to describe the mathematical models underlying distillation

— to give examples of practical, industrial applications of
distillation -

It is shown how upper secondary mathematics is directly used in the
trades and industries. There are two main target groups:

— Upper secondary pupils with special interest in applied
mathematics :

— Employees in the industries with highschool diplomas but
without academic education. The material described is used
in the companies for in-service education.

All upper secondary math-teachers in Denmark were given a specimen
of the books, and it is now part of the narrative material which is so
essential for all teachers. This is true also about math teachers.
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4. ONE EXAMPLE FROM THE BOOK, AUTHENTIC

APPLICATIONS OF MATHEMATICS.

Cheminova Agro is a chemical factory, which intended to make a pilot
plant to produce 2,4-pentanedione from acetone. 2,4-Pentanedione is
used as an intermediate product for producing medicines and plastic
materials.

Development and construction of a chemical production have different
phases:

1. The process is investigated in the research laboratory to find
a proper method of production. This method is optimized
according to profit, improvement of processes etc.

2. Construction of a pilot plant on the basis of the investigations in
the laboratory. The aim is to test the process on a larger scale —
e.g. 100 to 1000 times the laboratory scale. Here it will become
known if problems of a technical or chemical kind arise because
of the upscaling. The quality can be tested and the market can
be surveyed.

3. Comnstruction of the proper production plant on the basis of the
experience from the piiot plant.

The time horizon for the implementation of a project from the
laboratory to a proper production plant varies from 5 to 10 years.

To illustrate how mathematics is applied to dimension a pilot plant on
the basis of the laboratory-work, we will look at the following problem:

A pilot plant is to be built for producing 2,4-Pentanedione from acetone.
The capacity of production wanted is that 100 kg of acetone are used
every hour.

Many different processes must be dealt with and many parameters are
involved in the dimensioning of the plant. To get the impression that
this complexity can be governed by mathematical models is in itself of
great value, i.e. the strength of mathematical models is emphasized.

The mathematical preparations were made for the construction, but

for various reasons the plant was never built. Therefore the material
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i
is open, and we can use it to illustrate the calculations used in the
dimensioning problem. :

As a part of the process, you have to change acetone from a liquid at
20°C to vapour at the boiling temperature of 56.2°C.

The specific heat capacity and the heat of evaporation is known, so it
is easy to calculate the power needed.

The energy transportation takes place in a circulation evaporizer as
sketched in the figure:

ACETONE LIQUID AT 20°C . ACETONE VAPOUR AT 56.2°C
100 kgh ===\ r —~——< 100 kg/h

{ e

STEAM AT 120°C

CONDENSATE
(WATER) AT 120°C

Fig. 1. Circulation Evapofator

As an energy supplier steam at 120°C is used, which is condensed under
pressure to water at 120°C in a heat exchanger. Knowing the heat of
evaporisation and the power needed, the necessary steam flow can be
evaluated.

Typically the flow of acetone through the heat excha.nger is made ten-

times as big as the basic acetone flow.

The main problem is to find the surface area of the heat exchanger,
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knowing the heat transmission properties of the material (kJ/m?/h/K)
and the acetone flow.

It is easy to find the temperature in the tank which is a mixture 1:10
from different known temperatures. :

Which temperature difference in the heat exchanger are we to use? The
outer temperature is constantly 120°C, but the temperature of the flow
is rising because of the heating.

100 kgh Tin Tx ' : T out
_> ]
Tv : dA Tv

AT1i=Tv-Tin AT2=Tv—-Tout

Fig. 2. Heat Exchanger

By comparing the total energy transport with a differential energy
transport it is shown that as mean temperature difference you must use
the formula for the logaritmic mean temperature difference, LMT D:

ATy — AT,

LMTD = In(AT1/ATh)

where AT} and ATS are the temperature differences in the beginning
and in the end of the heat exchanger. Hereafter it is easy to find the
area of the heat exchanger.

It is interesting to show that if the temperature differences do not differ
very much, you can use the expected formula for the mean temperature
difference (ATy + ATy)/2. In the book it is shown by example that
knowledge of the LMTD is necessary.

Here you may break off the exposition, but the book goes one step
further.

The acetone is now in vapour form, and the next task is to dimension a
pipeline, where the vapour can be further heated and react to ketene.
This is done in the book.
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5. LEARNING AND TEACHING OF THE MODELS IN
THE CLASSROOM.

The models in the publications contain exercises that can’ be solved in
a traditional way. ‘If the students work individually or in groups the
process is made easier because of the appendix with suggestions for
solving the exercises and resuits. -

Having worked with “Authentic Applications of Mathematics”, it
is obvious that the students react in a very positive way to these
alternative teaching methods.

Their respect for and interest in the trades and industries is increased.
This is equally true of their respect for and interest in mathematics
since the models clearly show that the very .complicated processes
of production only can be controlled by mathematical models which .
among other things show their strength in splitting complex ways of
thinking into more simple ways.

It is the teacher’s impression that working with applications help
further the interest in the trades and industries so that many students
thus get a wider selection of future occupations.

Many of the processes in the publication cannot be recreated in the
class room which gives ample opportunity for field excursions to the
companies.

Fig. 3. Model of Circulation Evaporator (Fig. 1.)




Ch. 14] Authentic Applications of Mathematics 205

On the other hand the processes can often be perceived with a bit of
ingenuity. This happens in Fig. 3. where the circulation evaporator of
Fig. 1. is lustrated very well by a coffee machine and a wine glass.
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Partnership Modelling between
Industry - |
and University

Michael Hamson
Glasgow Caledonian University, UK

SUMMARY

An MSc course in Industrial Mathematics is in operation in Glasgow,
" mounted jointly by the Departments of Mathematics at the University
of Strathclyde and Glasgow Caledonian University. It is intended
to provide generalists in applied mathematics for careers in industry
and business. The year long course comnsists of taught modules, team
projects and an industrial placement. '

This Paper describes the Team Project activity in which groups of
students work on problems usually supplied by industrial contacts. The
duration of each project is strictly monitored and students report on the
outcome by written and oral presentation. In this way it is hoped that
the project work reflects industrial practice to the subsequent benefit
of the students.

The Paper describes how the Team Projects are organised and assessed
and gives details of the activity of one particular project carried out in
January 1993.

|
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1. BACKGROUND

The Course Leaders of the Glasgow M.Sc. programme, taking advice
from many industrial contacts, are of the opinion that vocational
postgraduate work in mathematics is not so much specialist but
generalist in nature. There is a need for the young professional
mathematician in industry to be versatile i applying his/her
knowledge of the subject, be prepared to work in small teams on
timed projects and be able to communicate the results with others
who may not be mathematicians. This communication would be a
report delivered probably to a manager whose interests are in decision
and policy as opposed to mathematical detail. While mathematical
rigour would of course have been established and checked earlier, a
manager would need convincing of some suggested new course of action.
Learning team activity skills of this kind are not usually a part of
other specialised M.Sc. courses dedicated to one particular branch of
mathematics.

Further, industrial mathematicians perhaps working in research and
development, can be asked to carry out computer simulations through
constructing mathematical models. This will probably be in order to
save money compared with live trials, or where a trial is impossible
(say an environmental issue or nuclear waste disposal). Model building
is at the heart of the Glasgow M.Sc. Most students joining the course
have no previous experience of constructing their own models — building
‘one’s own mathematical model is of course quite different from using
someone else’s model.

Based on the above objectives, the curriculum for the M.Sc. is
drawn up to contain a blend of subject module taught material, team
modelling projects and an industrial placement. This would seem to’
be a fairly unique type of Masters course in the U.K. With the aim of
producing generalist skills, the subject modules include a wide range of
topics: fluid dynamies, signal processing, experimental design, time
series and forecasting, elasticity, codes and ciphers, heat and mass
transfer and so on as well as foundation work in statistics, operational
research, numerical and mathematical methods, optlmlsa.tlon scientific
computing and software development.

The criticism often made of raw mathematics graduates employed in
industry is that they take some time before they can usefully tackle
real problems. The best postgraduates are usually very well equipped
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for dealing with standard theoretical and classical applied mathematics
but cannot easily convert this knowledge productively onto the actual
industrial scene. As has been stated above other skills are wanted:
awareness of who the ‘customer’ is, and the ability to discuss a provided
problem with an engineer or business manager. Within the Glasgow
course, team project work, and later the industrial placement, help
to provide this skill and also set up a partnership with industry who
provide much of the material for the projects. This is where students
learn the rough side of the business; some do not take kindly to
perhaps ill-formed problems and to team work debate, perhaps leading
to criticism from fellow students.

2. TEAM PROJECT ORGANISATION

A bank of modelling problems are assembled from contacts with
industrialists and these are added to by ‘learner projects’ supplied in-
house. All students take three such projects and work in teams of
three with one person designated as team leader. The leader has the
responsibility to liaise with the academic supervisor and to organise the
modelling work within the team. This person is separately assessed
for the leadership quality. Two of the team projects normally run
over a five week period of time alongside taught modules, but the
third is concentrated over two weeks without interruption, with stricter
deadlines. For all team projects, oral presentations are held and
written reports produced. The resulting outcome is discussed with
the industrial problem provider if possible. Sometimes an industrialist
will come to the Universities to present team project material directly
to students.

Objectives for Team Projects can be summarised as follows:
As a result of takirig part students cén
(i) time manage their work better,
(ii) lear‘n how_ to work productively as members of a small team,

(iii) tackle open-ended real problems by formulating mathematical
models and intrepret answers back in terms of the original
problem,

(iv) take technical decisions necessary in the model building exercise,




210 Industrial Collaboration .{Sec. D
(v} communicate the outcome in oral and written form,
(vi) react positively to peer group pressure and assessment,

(vil) produce support computer software and use a range of packages
as necessary, -

e

(viil) prioritise tasks with different time scales,

(ix) realise that more than mathematical techniques are needed to
solve a model-consultation and planning are needed first so that
the model is correctly set up,

(x) deal constructively with feedback.

A very good preparation is established from all this for the four month
industrial placement that follows for all students on the Glasgow course.
The partnership established can hopefully be extended during the
‘placement since quite often this takes place at the same Companies
who have provided the earlier team projects.

Assessment of Team Projects:

As can be imagined this is often a vexed question for all modelling work
no matter what level. Plenty has been reported on this elsewhere.
In this situation, care is taken to note team progress and leadership
effectiveness during a project and also the amount of help necessary.
Three assessments are given for each project: -

* (i) technical development,
(regular meetings between the team and academic supervisor,
with contact to the industrial problem provider if necessary)

(ii) oral presentation, ‘
(each student will describe (in 7/8 minutes) a part of the project
and will be questioned on this) ' '

(iii) written report. _
© (to be of length about 25 A4 pages; each student must insert
a short paragraph stating which part of the total project work
they are responsible for). -

Individual marks are awarded for (i) and (i} but a team mark is given
for the written report.
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for dealing with standard theoretical and classical applied mathematics
but cannot easily convert this knowledge productively onto the actual
industrial scene. As has been stated above other skills are wanted:
awareness of who the ‘customer’ is, and the ability fo discuss a provided
problem with an engineer or business manager. Within the Glasgow
course, team project work, and later the industrial placement, help
to provide this skill and also set up a partnership with industry who
provide much of the material for the projects. This is where students
learn the rough side of the business; some do not take kindly to -
perbaps ill-formed problems and to team work debate, perhaps leading
to criticism from fellow students.

2. TEAM PROJECT ORGANISATION

A bank of modelling problems are assembled from contacts with
industrialists and these are added to by ‘learner projects’ supplied in-
house. All students take three such projects and work in teams of
three with one person designated as team leader. The leader has the
responsibility to liaise with the academic supervisor and to organise the
modelling work within the team. This person is separately assessed
for the leadership quality. Two of the team projects normally run
over a five week period of time alongside taught modules, but the
third is concentrated over two weeks without interruption, with stricter
deadlines. For all team projects, oral presentations are held and
written reports produced. The resulting outcome: is discussed with
the industrial problem provider if possible. Sometimes an industrialist
will come to the Universities to present team project material directly
to students. '

Objectives for Team Projects can be summarised as follows:
As a result of taking part students can
(i) time manage their work better,
(ii) learn ho“; to work productively as members of a small team,

(iii) tackle open-ended real problems by formulating mathematical
models and intrepret answers back in terms of the original
problem,

(iv) take technical decisions necessary in the model building exercise,
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These assessments are judged by the academic supervisor and a second _
assessor and, where appropriate, the industria) contact helps with this.
Feedback takes place on all the team projects in which the supervisor
interviews each team member separately to confirm knowledge and
contribution in the project. This is also necessary before awarding the
leadership mark. Team members have the opportunity to comment on
the effectiveness of the team leader and whether the project proceeded
harmoniously.

Care has been taken by the Course Organisers to ensure that clear
guidelines are used in the assessing of presentations and written
reports. Students are given advice in the preparation of both these
communication skills at the start of the course. Réports are expected to
be Wordprocessed and drawn up in a manner consistent with standard
technical reporting: to contain summary, contents page, main body,
conclusions, appendices, references etc. As far as oral presentations are
concerned, overhead projectors and Jor flip charts are used and students
are expected to share the delivery equitably among their team and to
communicate coherently and be able to deal with questions.

About one fifth of the course is taken up with team projects; some
students carry out this activity in Europe as part of the Erasmus
interchange scheme. (Others are selected to attend the ECMI modelling
week [1]).

3. RECENT EXAMPLES OF TEAM PROJECTS

1. ‘Hall Effect Current Sensor’ :
—Honeywell Control Systems, Motherwell, Scotland. [see 4.
below]

2. “Iransport of Microbes through a Porous Media’
—British Nuclear Fuels, Risley, Warrington, England.

3. ‘Pipeline -Gas Network Compressor Efficiency’ -British Gas,
- Research and Technology, N ewcastle, England.

4. ‘Vehicle Routing in Milk Collection’
—Milk Marketing Board, Surrey, England.

5. ‘Measurement of Railway Performance’
—Scotrail Glasgow, Scotland.
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6. ‘Aircraft Response in Turbulence’
—Defence Research Agency, Bedford, England.

7. ‘Theory of Viscometry at Elevated Pressure’ -—National
Engineering Laboratory, East Kilbride, Scotland.

Some of the in-house projects:
8. ‘“Traffic Light Phasing in Glasgow City Centre’
9. ‘Asset-liability Mismatching by Insurance Companies’

10. ‘Modelling Epidemics’.

4. PROJECT: HALL EFFECT CURRENT SENSORS

Problem Supplied by Honeywell Control Systems,
Motherwell, Scotland

The Honeywell company manufacture microswitches and processors
used in electronic household appliances. One such device is a current
sensor based on the null balance principle. An annular steel core has a
magnetic field induced in it by a.current carrying conductor placed
through its centre. This field is opposed by another generated by
passing a current through a coil wound onto the core. The objective
is that the two fields cancel to provide a ‘null balance effect’ which is
detected by a ‘Hall element’ embedded in the core. The device is shown
in Fig.1. below.

a

A1
. /ﬂ
Vyeosel P Y E S R _'_C
Lx"l.=1 A/ | T
Y
Fig. 1

The current in the coil is also an indicator of the behaviour of the




Ch. 15] Partnership Modelling - 213

system, and the voltage drop producing this current satisfies the
differential equation:

d%y dv
— — == 2t 1
o + kdt + f(v) = by + b1 cos (2¢) (1)

where v is the voltage at time t,

k is a damping coefficient,
bp and b; are forcing coefficients,
and f(v) takes the nonlinear form gv? + (1--a)v.

It was thought that critica] ranges for the parameters are -
k20.1,01<a<04,0<b <20and0< b <5.0.

The behaviour of the voltage is required taking into account the
barameter variability. )

Initiation of the Project.

The problem provider from Honeywell has a general mathematical
services role to support scientists and engineers. There is an element of
the ‘all-rounder’ about this sort of industrial mathematician as advice
is sought from this person within the Company on a wide variety of
problems. The students who chose to take up this project had no
previous experience of microswitches and current sensors (though a
Course visit had been made to Honeywell earlier). '

The Course Team normally encourages the students to form their own
teams and then to select from s range of projects offered which will
normally be more in number than is required. When a project has been
especially provided from an industria] contact, then usually a team will
be directed onto this, perhaps leaving in-house projects as the spares.
In this case the team wag acquainted with the project directly before
the Christmas break and then returned in early January (1993) to work
on it over a short two-week period.

The project for the M.Se. students centred around obtaining some feel
for the behaviour of the voltage v(t) in (1) above for the parameter
values suggested. The major demand on the team was caused by
the nonlinear effect of f(v). The Company interest in this problem
concerned what happens when the grade of the steel used in the core is

!
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changed for cost cutting reasons. ' The effect of this was to produce
unwelcome low frequency behaviour in the voltage known as sub-
harmonics. With regard to (1), the model of the switch sensor, this
means we are looking for a solution which exhibits periodicity of lower
frequency than that generated by the forcing terms. The resulting
‘slow’ oscillations, perhaps remaining un-suppressed by damping, are
of concern to the Honeywell engineers.

Team Procedure

The student team had received preliminary information when selecting
the project. On their start day a detailed ‘FAX’ was waiting from
Honeywell giving fuller information. They were not expected to .
research the background of current sensors and so were presented with
a well-defined problem. '

Despite possessing sound knowledge of linear differential equations,
equation (1) needed the team to try more advanced methods in its
investigation. Reference [2] seemed a good source. There was a
dilemma whether to concentrate on analytical methods detailed in [2] or
whether to make major use of a numerical differential equation solver,
package [3] being available.

It was decided that it would simplify the analysis at the outset if ¢ were
replaced by 7/2 to re-scale (1) as

2y dv
432—|—2ka—-+s11 +(1—€e)v=>bg+bicos T (2)

where the parameter a has also been replaced by e, to indicate that
it is to be regarded as a small quantity so that (2} can be then be
tackled by the perturbation methods. Now it can be seen that (2) has
a forcing term with period 27, so that the subharmonic behaviour that
was being sought would be manifested by solution terms of the form
cos (7/2),cos (7/3),..., known as sub-harmonics of order 2,3,.... and
so on to produce periodicity 4x,6m,... .

The perturbation method means a solution of (2) is required as an
expansion of v(7) in powers of € in the form

v(T) = vo(T) + en{7) + e2ug(T) +
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When coefficients of ¢ are equated, a series of LINEAR differential
equations result:

vy + 2kv) +vp = by + by cos T (3)

4v] + 2k} + vy = vy — of, ete., (4)

From the first of these equations it is clear from the form of the left
hand-side that solutions involving cos (7/2) must occur which would
persist for small damping. Search for terms in cos (7/3) proved more
difficult. The approach favoured by the students was first to neglect
the damping term, reasoning that damping would be a mechanism for
suppressing the subharmonic effects. A solution of (3) with k = 0, may
be taken in the form

vo(T) = bo — (b1/3) cos 7+ Acos (7/2), A arbitrary.

Hence the right hand side of (4) may be evaluated and provides, after
suitable rearrangement, a series of cosine terms:

c1+cacos (7/2) -+ ez cos (1) + cgcos (37/2) + ... + ercos (37), (5)

where the coefficients ¢; depend on the earlier parameters bg; b; and A.

While (4) is linear, obtaining its solution is not so useful as appraising
its right-hand side. The students turned to [2] for help and from Chap.
7 came the comment that ‘a subharmonic of order three is stimulated by
an applied frequency three times the natural frequency of the original
linearised equation’. Thus the term cqcos (37/2) in (5) seemed to
indicate the presence in vy (7) of the required subharmonic, while other
terms perhaps indicate subharmonics of higher order as well. The size
of the c4 coefficient would determine the “visibility’ of the subharmonic
and this was tied up in the values of the parameters by, b; and A.

The students-were able to report on this outcome, but noted that its
validity depended on the legitimacy of the perturbation method with
sufficiently small . They were unable in the time available to find
parameter values which would deliver the subharmonic of order three.
It was decided to make use of the numerical solver package [3] to see
if the behaviour could be shown graphically. A number of trials were
attempted in obtaining the approximate solution of (1), with k = 0

and taking various choices of a, by and b;. A subharmonic feature was
I
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found present in most of the graphical output, but not of order three.

The most clear cut evidence achieved in the time available is shown on
Fig. 2.
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Fig. 2

Here as the cubic term becomes small the outcome will revert to the
linear solution:

v=1—(1/3)cos T — n-(2/3) cos (7/2), period 4.

Team Project Outcome

~The interim results indicated above were reported. The parameter
variability needed some confirmation from Honeywell before the
subharmonic effect could be fully understood. The Company viewed
the students’ effort as a useful preliminary investigation to a more
thorough treatment needed. The problem: provider at Honeywell was
more inclined to trust analytic methods compared to numerical output
generated from a differential equation solver package. He suggested
the project should be attempted over a longer period of time so that
more work could be devoted to finding the order three subharmonic.
The achievements of the team had been satisfactory, although on
feedback between supervisor and students, their knowledge of the
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general behaviour of differential equations was found to be somewhat
limited, confined mainly to a good grasp of classic solution techniques.

5. CONCLUSIONS

Notwithstanding the incompleteness of the example given in 4. above,
there was a lot gained from this work. Considerable insight into micro
electronics, non-linear differential equations and general harmonic
analysis resulted. There were also lengthy discussions with the
Honeywell company. The activities give some indication of how
partnership projects work on the Glasgow M.Sc. There are often
unresolved outcomes giving rise to further industrial projects for
later use. Nevertheless there can be some dangers in taking raw
problems for direct use with students when the time needed to obtain a
reasonable solution cannot-be forecast accurately. With this particular
project the students suffered some negative feedback since they were
not especially successful with the problem and the Company clearly
required and expected more work to be done. Tutors at Glasgow
Caledonian University have since been tackling the current sensor
problem themselves! Generally however, team projects supplied by
industrial partners have been most welcome and have helped students
prepare for the real world of industrial mathematics.
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Scope of Mathematics

Practitioner Involvement in
Undergraduate Mathematics

Michael Herring and A. Bloomfield
Cheltenham and Gloucester College '
of Higher Education, UK

SUMMARY

This paper outlines a compulsory second level mathematics module ab
CGCHE. '

Maths is a main field in the college’s undergraduate modular degree
scheme. One of the aims of the module is to develop an appreciation
of the role of the mathematician in commerce and industry. The
involvement of such practitioners in the module is discussed and a
number of problems set by them are presented. The incorporation
of these problems into an assessment pattern is also discussed.

1. INTRODUCTION

At the above college, there are currently 90 students studying

mathematical modules at the second level. 70% of these students

‘are studying for a B. Ed. Degree (Primary) and when qualified will

teach children up to the age of 11. These students will complete their

study of mathematics at the end of level 2. In order that all students

have a broader view of mathematics and mathematicians, the module
!
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entitled “Scope of Mathematics” has been devised with the following

aims; Students should develop an appreciation of:

i. the role of mathematicians in industry,
ii. the possibility of mathematical analysis of recreational activities,

iii. the fascination of abstract mathematics.

The course is delivered by a team of tutors through informal lectures,
tutorial sessions, a Mathematicians in Industry Conference and student
presentations. '

Topics presented by the staff through informal lectures have included:
Recreational Mathematics, Number Theory and Ciphers, Population
Modelling, Music and Mathematics,' Psychology and Mathematics,
Logic and Proof.

This section of the module will operate for the first seven weeks.

2. MATHEMATICIANS IN INDUSTRY CONFERENCE

This s‘ession, which runs for three hours, has up to 12 “practitioners”
drawn from industry and commerce. The practitioners reflect the
nature of local employment in the region which has a number of light
engineering companies, several connected with the defence industry,
and also a number of insurance companies and building societies have
their headquarters in Gloucestershire. The focus of the day is to look
at the role of the mathematician and not solely at.the mathematics.
Students have been advised to prepare their own questions prior to the
conference. On the day the students are divided into groups of 7 to 10.
Students and a practitioner begin with a groupwork activity on The
Indivisible Load (Industrial Society 1990) which has been widely used
by the Industrial Society as an Icebreaker activity. The students then
spend 30 minutes with the practitioner discussihg the practitioner’s
role in industry. The practitioner then moves onto another group of
students for a second witness session. The final 30 minutes of the
conference consists of introductions from a number of practitioners to
the problems and case studies they have devised. Students will choose
one problem to investigate and present as a group project at a later
time. This is part of the assessment pattern for the module. Some
examples of starting points for projects are presented in the appendix.
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3. .RATIONALE

The above pattern has been constructed to provide opportunities for
industrialists to communicate with students in an efective manner.
One-off large group lectures are not ideal ways of comfnunicating
ideas and would be seen as intimidating to an employee not used
to presentation. The question arises as to whether it is realistic
to try to give students a feel for industrial mathematics in the.
time available. Edwards.(1991) comments that the development
from graduate mathematician to industrial mathematician takes time

~and that the proportion of time spent in those activities instantly

recognisable as mathematics is relatively small. The two mathematical
attributes he considers to be of immense value are the confidence to
ask “why”? and the confidence to say “I do not understand” which
are central to the spirit of the Mathematics Field of the college. It is
important for practitioners and students to explore their commonality
of belief in a situation that allows such exchanges to occur.

4. EVALUATION OF THE MATHEMATICS
IN INDUSTRY CONFERENCE

The module has operated for three years and at the end of each
conference an evaluation form was completed by all studénts (in pairs).
The form was intended to give students a fairly open-ended opportunity
to comment. Analysis of these questionnaires indicated that the format
of the conference has met with general approval from students, who
welcomed the opportunity to ask questions of practitioners. Frequently

occurring phases on questionnaires were “worthwhile, interestin ,
b ) ‘

informative, useful, helpful”. Students’ views on the witness sessions
naturally depended, to a certain extent, on whom they spoke to but
generally it was recognised that there was a good variety of practitioners
with differing occupations and backgrounds. A conscious efort had
been made to invite a balanced proportion of female practitioners which
was commented on and appreciated by a number of students. Students
found it useful to hear about some of the possible uses for a mathematics
degree.

Perhaps the most revealing comments came from the students whose

images of mathematicians had changed, usually as a result of realising

the variety of applications of mathematics. We received comments such

as the following , -
{
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“You do not have to be a mathematical genius to get ahead in
industry.”

“Broader range of mathematics used than previously thought.”

“We discovered that maths is not always directly involved and that it
is not just a question of solving piles of sums.” ‘

The opinions of those siudents who were intending to become teachers
were specifically sought and how they might apply what had been
learned from the course and the conference in particular. As might
be expected there was a wide variety of responses. The following give
some idea of the range of comments:

“Try to learn more about industry so I can relate it to my teaching.”
“Stress the importance of teamwork, communication etc.”

“Inform children a little more about industry, initiative and enterprise.”
“Don’t paint a bad picture of industry, it is not that horrible.”

“Can I really apply it? It just made me more aware of certain aspects
of my own and other personalities.”

Some students felt that they should have had a free choice of practi-

tioners and on the negative side, however, one response stated
“sadly confirmed, more statistics and computers”. ‘The views of the
practitioners were also obtained and they universally welcomed the
opportunity to take part in the conferences. Comments expressed were:

“As a forum for the practitioners it was probably a rare experience...an
unusual exchange of opinions.”
“A pleasant change from a morning at work.”

‘Practitioners also remarked on the range of background of students: -

“There was a wide range of mathematical backgrounds, consequently
a wide range of interests-needed to be catered for which was difficult.”

The role of group work and the use of the icebreaker activity received
mainly favourable comment:

“From a range of mathematical specialisations the groups
communicated well among each other.” ‘
“The transport problem (icebreaker) worked...I gave a lot of guidance
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at first then they took over.”

Several practitioners felt that they wanted more time for the event and
some recognised that allowing students a choice of topic or focusing
on those wishing to follow a mathematics based career were possible
improvements while noting, however, the potential problems with these
approaches. When asked whether their view of Mathematics in Higher
Elducation had changed, the practitioners highlighted the strengths and
challenges of the Modular Scheme: ' '

“Very practical and tuned in to what is required of them when they
leave college.”

“Seems to be a lot more choice nowadays, though this probably reflects
my background.”

5. ASSESSMENT OF THE MODULE

Assessment is by means of one assignment and one presentation. The
assignment consists of a portfolio of work reflecting the topics covered
in the first part of the module. Students work in pairs and they use
“starter problems” provided by the tutors as a basis of developing and
extending their knowledge. Evidence of an ability to pose and answer
their own questions on topic areas, as well as extensions to the starters,
is sought. A clear analysis of how the pair worked together e.g. the
nature of individual contributions is required.

The second component of assessment is a presentation by a group of
three or four students of a project chosen after the conference. The
presentation is made in front of a subset of students and two tutors
who will award the group a grade. The group may then share out
credit within certain constraints. Prior to the presentation a group
will decide criteria and weightings for each criteria. An agreed peer
assessmnent rating sheet is then handed to a tutor. Students will not
be graded at this point but all students will be aware of how internal
assessment is conducted. A tutor will act as arbiter if a group cannot
agree on an individual’s score and the tutor’s decision will be final.
An exemplar of how the system works is given below (see Gibbs et al,
1989).
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MT 201 PEER ASSESSMENT RATING
- - - has contributed to the groups work in the following way

CONTRIBUTION
. . MAJOR  AVG. MINOR
1. Organization & Management +5¢/ 0 - =5
2. Ideas & Suggestions - +3 - 04/ 3
3. Data/Evidence Collection +3 0 -3
4. Analysis of Results +3 0/ -3
5. Proofs or Conclusions +3/ 0 =3
6. Report Writing +3/ 0 -3
TOTALS +11: 0 -3
Group Mark to be Entered by Turor A 60
Individual Students Total Rating B 8
Group’s Avg. Total Rating C +1.2
FINAL GRADE - (A+B-C) 67

We have adopted the approach of allocating different marks to the
different members of a group in order that their relative contributions
are reflected. We feel that it offers a solution to the problems associated
with assessment of group project work, for example unfairness to
individuals, high average marks and narrow bands of marks. The
criteria and size of awards/penalties can be negotiated with the
students or even be determined by them at the start of the project so
that they are aware of how they will be assessed and have a commitment
to the criteria.

Qur observations are that students appreciate the opportunity to
contribute to their assessment pattern and try to show respect for other
colleague’s ideas and commitments. The tutors have had to arbitrate
on the individuals scores within a g;roup on just one occasion and this
was settled amicably.

6. CONCLUSIONS

The experience gained at Cheltenham and Gloucester College is such
that the nature of this conference and the subsequent project work in
groups has been beneficial to the students. Students and practitioners
have been comfortable with each others’ role at the conferences and
have been prepared to make positive contributions to the events. It
is important to chose practitioners who are interested in the students,
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their backgrounds and motivation for studying what they do. Choice
of practitioners was made initially through personal contact with
mathematicians in the centre and this has led us to a network of
interested parties and contacts with further companies in the locality.
The practitioners involved have become familiar with developments
in higher education in the college, particularly with the scope and
objectives of the modular degree.

We would hope that the prospects of employment for our students
after graduation have been enhanced with these contacts. For those
students who will become teachers, we feel that benefits will accrue
for both these people and the children they will eventually teach
because the impression that industry and commerce is an alien and
hostile environment will' not be propagated. The important aspects
of relevance to vocational areas and the need to develop common
skills and realism, in terms of situations, contexts and tasks involved
in the assignments and contacts with interested parties, have clearly
been exhibited. Some students have been motivated by contact with
the mathematicians from industry and commerce to pursue the topics
introduced in the conference as projects or investigations at a later
stage of their degree. For instance, the project on image functions (see
appendix) has motivated one student to investigate in greater depth the
field of image processing and he is now in active collaboration with the
practitioner from the company concerned. We will continue to monitor
the development of the conferences. For instance, some issues which
will need further considerations for future events are:

i} the length of each witness session,
i) use of the mature students’ experience,

iii) student choice of practitioner sessions and the possible
involvement of mathematicians who have transferred from
industry to teach in schools.

We would recommend that other institutions actively consider this
method of investigating mathematics in industry. By discussing the
role of the'mathematician rather than the mathematics itself, a realistic
impression may be gained by the student. It is clear that dialogues
between practitioners and students can eliminate misconceptions on
both sides. However, we recognise that without the good will and
enthusiasm of practitioners our conferences would not have been

effective at changing attitudes.
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APPENDIX

The following are a sample of problem statements as set by the
practitioners at the Mathematicians in Industry conference. Where
appropriate, however, relatively confidential information has been
onitted. Practitioner problems have differing levels of authenticity. For
the student they all represent a higher level of authenticity because of
the context in which they are represented. We hope the'list of problems
below illustrate the wide variety of areas from which our practitioners
have been drawn.

A PUMP PROBLEM

A pump’s performance may be represented by three curves, Produced
Head against Flow Rate, Absorbed Power against Flow Rate, Efficiency
against Flow Rate. When a pump is being modelled mathematically
during the design process, the “Best Efficiency Point” (BEP) is first

fixed in order to specify the optimum flow, head, efficiency and
" consequent power absorption. In addition to this, the head may be
specified at two additional points, one at zero flow and another, for
example, 140% of BEP flow. Based on given figures, find an equation
of a smooth curve for which the equation is known.

The efficiency will also be represented by a curve which is fixed by three
conditions : its value is 0 at zero flow, its value at BEP is known, it
must peak at BEP. Deduce a method of meeting these three efficiency
conditions with another smooth curve for which the equation can be
found. Given that the Head-Flow and Efficiency-Flow curves are now
defined in equation form, can the power be represented as another
smooth curve for which an equation can be found? Hence find the
power which is absorbed at intervals of 5 1/s between zero flow and
140% of BEP flow. What effect would there be on the modelling process
if additional efficiency points are specified? The Head-Flow curve of a
pump is often best represented by a line at low flow, becoming a curve
at higher flow. How would this affect the modelling process?

A. PUBLISHER’S PROBLEM

What advice is to be given to authors on format (page size) and extent
(numbers of pages), possible use of photographs and a second printing
colour in order to achieve an acceptable profit on a “reasonable”
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published price with sensible print runs over four years for a new
mathematics text book.

Data provided to students included: two formats, print-run parameters,
pricing parameters, costing formula and parameters and analysis of
costs.

IMAGE FUNCTIONS

An image can be described by a step function in two dimensions. The
object of this exercise is to reduce the data required but still have a
fairly accurate description of the image. To simplify matters take a one
dimensional cross section of a tiny part of the image. You might get a
function such as lm below. lm could be described by an ordered set of
numbers: —Im = {20,16,10,12}

B1 1“ _
20 0! l ]
0 2 4
Im
10 321%__ _
, o [
0 2 4
0 2 4 33
1 ,
0"———|
0 2 4

Fig. 1

Suppose now we invent 3 base functions such as B1, B2, and B3 above.
They could be described as Bl = {0,0,1,1} B2 = {0,1,1,0}
B3=1{1,1,0,0} We could make an approximation to Im by combining
B1l, B2 and B3 in the right quantities. For example, the function P
" below gives a fair approximation.

P =13B1-4B2--20B3.
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Calculation shows that P = {20, 16,9, 13}

We could describe P by just 3 numbers [13, -4, 20] and hence we have
a small saving of data.

Now you might like to consider the following problems :-

1. Is the approximation above the best we could get with the
3 functions defined? What is a good measure of “best
approximation”?

3. Is there a good way to calculate the best possible combination
of the functions?

3. Was it a good choice of base functions? Could you choose
functions that would be easier to calculate or which would make
‘it easier to predict how good the approximation would be?

4. Could you generalise the methods to deal with functions defined
in 8 intervals?

PERMANENT STAFF VS. OVERTIME

You have to determine the optimum number of staff within a central
warehouse function so that the annual wage costs are a minimum. This
is to be undertaken for a period of three years. Students are presented
with rules and basic information such as hourly rates of pay, union
agreements etc. and the profile of the work threughout the year.

MAXIMISING THE EARNINGS OF AN EXTRUSION
PLANT ' ‘

One of the major activities of a particular company is the production
of aluminium extrusions for customers to subsequently convert into
aluminium products such as windows, doors etc. The management wish
to investigate the effect of different volumes of extrusions of different
film thickness being processed in its anodising plant.

Students are presented with information and numerical details of the
anodising process, pre-treatments, post-treatments and earmngs for the
various film thickness.
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SCHEDULING THE PRODUCTION OF TEXT BOOKS

Consider how to schedule the manuscript stage prior to editorial/pro-
duction and how to arrive at a pre-designated publication date, 21
months after the whole manuscript cycle starts. This cycle requires a
minimum of 36 weeks. Students are provided with information relating
to the edit/production schedule.
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The Value of a Modelling View on
Primary Children’s Problem
Solving

Wendy Otley 7
Blackrod County Primary School, Bolton, UK
and

Jane Govender
Gorse Hill Primary School, Manchester, UK

SUMMARY

This paper examines the value of using a modelling approach to analyse
children’s practical mathematical activities, in order to interpret their
experiences and to develop their problem solving skills. We will
relate the content of our college course to our subsequent classroom
teaching by drawing parallels between the skills and attitudes which we
encountered at our level, and those that we observed to be developing
in young children while involved in structured Mathematical Modelling
activities:

1. A COLLEGE BASED INTRODUCTION TO
- MATHEMATICAL MODELLING ‘

We specialised in mathematics as part of our four year B. Ed. degree

course. In the first year, studies were carried out at our level while in the
A
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fourth year the content was applied to the primary age range. Following
our initial introduction to Mathematical Modelling, a formal lecture,
we were presented with a real life problem to solve using the established
principles. This involved examining a situation whereby two trains were
required to travel along the same length of track at similar time, and
making recommendations for a time-table which avoided any collisions
or delays. .

In the final year of our college course we were again involved in
Mathematical Modelling activities, this time with junior age children.
This project required the ten-year-olds to examine the most efficient
way of policing a football match, using a computer simulation called
PLOD. We observed that the children were able to indirectly make
use of the Mathematical Modelling sub-skills to solve the problem.
Realising that Mathematical Modelling could play an important part
in-children’s mathematical development, we were stimulated, as early
years specialists, to consider whether it would be possible to do such
work with infant age children (4-6 yesr olds in our case). It seemed a
furidamental error of judgement to deny them these experiences simply
because of their age, as so often happens.

As infant teachers we realise the value of structured play activities
in child development and found this practical approach conducive
to Mathematical Modelling activities. The ability of young children
to become involved in such activities is illustrated by the following
examples. T

2. SIMULATED HOUSE CONSTRUCTION IN A
. RECEPTION CLASS

While working with a Reception class of five-year-olds on the theme of
‘Homes and Families’, a number of children decided that they would like
a ‘real house’ in the classroom, rather than being content with the home
corner area. We discussed the possible building materials that could
be used. The children eventually agreed to use old cardboard boxes
when they realised that there was a limit to the amount of the other
construction materials available, such as lego and plasticine. Prior to
actually building the house, the children each drew a picture of the
house they wanted to build. Over the course of the next two weeks the
children discussed their ideas between themselves and with the teacher.
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During this period the teacher’s role was that of a facilitator, supporting
the children ahd ensuring that their practical needs were met as far
as possible. This enabled them to achieve the full potential of their
ideas, minimising the frustration which can occur as a result of physical
barriers and limited resources. At the end of the two weeks they had
successfully constructed a ‘real house’ within the classroom. It was
approximately 1.5 cubic metres in area, with an open doorway, spaces
left to represent windows and a triangular roof.

Although the children accepted this as a ‘real house’, it was obviously
a simulation of a real world situation. It is useful to look at the
children’s activity from a modelling point of view, using the seven sub-
skills indicative of such an approach (Shell Centre for Mathematical ed.
1983). These are listed below with relevant examples of the work that
related to them.

Generating Variables

This -involves considering the factors pertinent to the problem. The
children had to decide if the house was to have doors, windows and
a roof. While some of these factors were planned ahead, such as the
positioning of the door, others were handled on the spot as the children
became aware of them, such as labelling any spaces that remained
between boxes as windows. :

Selecting Relationships

This skill involves an increasing awareness of different variables which
relate to each other. For instance, the children discussed how the size
. of the house was dependent upon the amount of construction material

available, and the space available for building related to the number of
children likely to play in the house.

Generating Relationships

Having established that a relationship exists between variables, the
process of generating involves the identification of these relationships.
In the following example the continuous process of selecting and
generating relationships is demonstrated. One of the children involved
in the activity was able to explain the relationship between a person’s
height and the height of the door.

Katie: “You won’t be able to get in.”
Teacher: “Why not?”
f




236 Primary and Seconflary Examples [Sec. E

Katie: “Because you're too big! I can fit in, but I'll have to
duck a bit here. The new little children will fit
in though.

The children were satisfied with this simple solution to their problem;
small children can walk in, taller children have to duck down, while
adults are too tall to go in the house. -

Identify Specific Questions

The children had to consider and agree upon solutions to specific
questions which emerged during the practical activities.  These
questions were posed by both teacher and children, such as:

Where is the door going to be?

What shape will the roof be? -
Many of these questions involved ideas of shape and space and the
application of existing knowledge of building structure.

Modelling

At a basic level this involves the practical application of mathematics
to a real life situation. This necessitates making assumptions and
simplifying essential features, enabling the application of existing
mathematical knowledge to solve the problem. The children discussed
having an ‘upstairs’ during the building process. However, using their -
knowledge of shape and weight, the children realised that this was
impractical and simplified their initial ideas; they built a house with a
single room.

Estimating

Estimation skills were constantly in use. It was necessary, for example,
to estimate which box was most appropriate for a given space in
the wall. During the construction process it was noticeable that the
children's estimation skills developed so that they were increasingly
able to make more accurate judgements.

Validating

This involves evaluating the result of the modelling process in order to
assess its validity and make any necessary adaptions. The children were
satisfied with the basic house construction but chose to adopt specific
aspects of their house to meet their needs. They made post-boxes and
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furniture, and improvised a cardboard box as a rotating door, so as to
create a more stimulating play area which fulfilled their concepts of a
‘real house’.

Inherent in all these sub-skills are the ideas of problem solving and
investigation. The development of these is essential because they
facilitate the application of mathematics in a variety of situations,
thereby making it useful. :

While encouraging independent work, the teacher must intervene
at opportune moments. It is important to recognise the role of
positive intervention in ensuring breadth of experience and continuous
development. In such a manner it is possible to provide structure to
the experiences without dictating children’s activity.

3. INFANT FUND RAISING

An alternative way of analysing children’s involvement in problem
solving activities is to use the modelling cycle. The work in this example
was carried out with a class of six year olds. Formulate the real problem
As part of the annual school sponsored event week, it was agreed that
each class should decide upon a fund-raising activity. Our problem
was to choose the most effective way of raising money. After a session
of brain-storming the children decided to bake cakes and sell them in
the school tuck shop. This was a popular choice with the children as
they already baked on a regular basis with parent volunteers. It was a
rare opportunity for them o become involved in a real world problem
solving situation, as opposed to the simulations which are commonplace
in infant classrooms.

Assumptions Made in the Model

Due to the egocentric nature of infant children’s thoughts, it was
extremely difficult to get the children to express the assumptions
they were making. It was apparent that the children were making
automatic assumptions, such as the ability of people to pay for the
cakes. The teacher’s role was to discuss these implicit assumptions
with the children in greater detail. Other assumptions included:

That the ingredients were obtainable;
Parental help was available;
That other children would want,to buy the cakes.
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Formulate the Mathematical Problem

The children then needed to decide what they wanted to bake. This
led on to a discussion regarding which product would be the most
successful. Many suggestions arose and eventually the class -agreed
to conduct a survey of the potential customers. The children had
conceived the mathematical problem as being to discover which was
the most popular cake, at this stage they had no- coricegt of cost and
profit. -

Solve the Mathematical Problem

The children had previoius experience of using tally charts to record
results of surveys, and chose this familiar method in this situation
too. In order to ensure a worthwhile survey, the teacher suggested
that the children should select three cake categories for the tally chart.
They based their choices on previous experiences of baking and were
able to conduct the survey independently throughout the whole school,
returning to class to discuss their results.

| Interpret the Solution

Using the results of the survey the children’s overwhelming conclusion
was that Rice Krispie cakes were the most popular.

Validate Model

On agreeing that we would bake Rice Krispie cakes, the issue of cost
emerged. This was necessary as an essential part of the validation was
to ensure that a profit was made. Although their ideas were simplistic,
such as discussing how much money was typically brought in for food, it
was possible for me to introduce the basic concept of profit. This again
underlines the importance of sensitive teacher intervention in order to
further children’s understanding. It would be possible to use more
precise mathematical techniques in order to analyse the situation more
accurately with older children. After the price was set, the children
decided to make posters to advertise the event and ensure it’s success.
After a complete sell-out they were proud to find they had succeeded
in making a substantial profit.

Communicate Results

The children discussed all the different aspects of the activity and
although the event was a total success, the children were motivated to
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evaluate their achievements. They discussed, for example, how demand
for the product exceeded their expectations.

The potential for such activities to contribute to mathematical
development is clear. In this example alone the mathematical skills
involved include Data Handling, Weight, Money, Number and the
essential ability to apply mathematics to a real life situation.

4. CONCLUSION

From both examples if is clear that it is profitable to have a modelling
view on children’s activities, to be able to interpret these activities
accordingly and to help children in their problem solving. - We have
become very aware of the contribution that a modelling approach
cani make to a child’s mathematical development. It has, therefore,
been possible to provide appropriate stimulation in the Farly Years
environment. This suggests that if all teachers could gain a similar
insight as part of their training there would be positive implications for
all children’s mathematical development.
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Modelling Growth Heuristically

John Golobe
The Renaissance School, New York, USA

SUMMARY

AIDS has been with us for more than a decade, but it has only been
within the last few years that the public has recognised it as a crisis.
The same can be said about the problems of our national debt and
over-population in the third world. All of these problems, which seem
so different in their causes and effects, are problems of growth. They
started small and becane large and will become larger still unless we do
something to stop them. It would have been easier to solve them while
they were small, but we would have had to recognise them sooner. So
the question is “How did we go from small to large-almost before we
knew 17" '

If we look for an answer by drawing a graph, it would start low and end
high, but then we would have to decide how to connect these points to
show growth happening—almost before we know it.

We could-go from small to large

quickly: {A, B, C} of slowly: {D}
We could go

suddenly: {A, C} or gradually: {B}

But there is only one way we can go-—almost before we know it: {C}
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Graph C shows us how the spread of AIDS, and the problems of debt
and overpopulation happen because there is no warning at the start
or along the way that they will become large until the end. This is
what makes their early recognition and prevention so difficult and all
the more necessary. But giving people warnings will not suffice to get
them to make the personal sacrifices and changes in lifestyles which
prevention will require. Limiting growth will be possible only when
people are educated to understand how “we go from small to large”
and are convinced that it will happen not by chance but according to
a predictable pattern.

In this article, we will outline for mathematics teachers on the middle
and secondary school levels how they might teach about exponential
growth, the type we are talking of here, not through the algebraic
formulas and graphs used in advanced courses, but through the
process of modelling. We will create models which, like growth, are
dynamic and which students can use to generate data whose graphs
are exponential. Working with these models, students will be able
to derive many of the basic properties of exponential functions which
they will study later in advanced courses. Through these models they
will come to understand several of the most important and interesting
applications of exponential functions that explain the problems of
growth. But most importantly, students will be convinced of the
need for limiting growth to prevent the problems which result from
it, because these models will show how they can happen.
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1. UNDERSTANDING THE PROBLEM OF GROWTH

Let us look at the growth curve for the world’s population (Fig. 2),
and ask what it tells about history.

GROWTH OF WORLD POPULATION 6 B
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Fig. 2 Growth of World Population

One observation is that the slow steady growth of population over the
centuries seems to have been unaffected by all of the wars, the famines,
and the plagues of the past. But even more remarkable is the sudden
upsurge in population that started around 1650 and continues today.
The most significant feature, however, is what it tells us about the
future, for if growth continues it will lead us into an era of scarcity
which, as the steepness of the graph indicates, will happen sooner than
we expect (almost before we know it).

What was the cause of this upsurge? In noticing the fact that it began
around the year 1650, we might look for an explanation in historical
events like the colonization of the western world, or the religious
reformation, or in advances in technology and medicine which started
then. There is no doubt that these events did affect population trends.
However, the appearance of the graph is deceiving. If we apply the laws
of mathematics, we would have to conclude that it is growth itself which
is causing more growth. In other words it is just the normal process
of people having children in each and every generation which is the
primary cause of what appears as an abnormal upsurge in population.
But how could this upsurge occur when people today are having no
more children than before the year 16507 A

The different ways this growtih data is displayed (Fig. 3) makes the
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upsurge appear at different times. This shows that there is no upsurge
in the rate of growth, but that the rate over time is continually
increasing.  Therefore history, economics, or medical science alone
cannot explain the growth we are observing, but that the long period
of slow growth followed by a short period of rapid growth happens not
by chance but according to a pattern of growth itself.

A look at some statistics (Fig. 4) on the spread of AIDS shows an
upsurge in the number of cases in the late 1980’s following a long
period of slow growth. This is the same pattern we saw in the growth
curve for population. Here again we tend to look for the cause in
greater drug use, sexual contact, or in a new strain of the virus, but
such evidence is lacking. People today are doing just about the same
things they were doing before the upsurge as shown by the fact that
the rate of transmission, the increase in the number of cases per year
as a percentage of total, has not increased in the inhtervening years.
As with the population curve, the long period of slow growth in the
spread of AIDS leads to the short period of fast growth not by chance
but according to a predictable pattern. If we had understood this and
were convinced of it in the early 1980’s, we might have been able to
prevent the increases we are seeing today.

We can also see this same pattern in the growth curves for government
debt. The problem which all of these examples present is not just that -
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these long periods of slow growth allow people to think that slow growth
will continue, it is in the way people think about growth over time. Our
intuition tells us that growth in the future will be like growth in the
past. More precisely, people tend to think of growth as proportional
to time (Fig. 5). If a quantity grew by 2 units last year and continues
to grow in the same way, then it will grow by another 2 units in the
coming year. We assume that if there is a difference, then it is due
to some outside factor affecting the process, but not the process itself.
The growth we are observing however, is not proportional to time. It is
proportional to the quantity that is growing. Here we measure growth
. by a percentage of the quantity at the time it is growing. So if a
quantity grew by 2% over last year’s level and grows another 2% again
this year, we calculate this year’s increase over this year’s level. For
example, if last year’s growth was 2 units, then this year’s would be
2.04 units. We are not adding 2's each year, but multiplying by 1.02
two times. The difference is slight over a short time span, but when we
multiply again and again over a long span, it results in the upsurge we
are seeing.

2. THE DOMINO MODEL

If we are to teach middle and high school students about growth, indeed
if we are to convince them that there is a connection between the long
period of slow growth and the short period of rapid growth, then we
have to show them how it happens. Formulas and graphs alone cannot
do this, because they are descriptive. What we need is a demonstration
which like growth is dynamic, is intuitive, and which teaches students
by giving them experiences they can participate in. What we need
to do is model growth heuristically. So for this purpose we can show
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students a short video, Falling Dominos and the Spread of AIDS, of an
arrangement of 1,700 dominos that falls down in a chain reaction, not
one by one, but in waves of increasing numbers within 5 seconds (Fig.
6). By showing how quickly one domino causes many to fall, we show
by analogy how quickly ATDS can spread in a population.

This video, which was produced for broadcast as an AIDS prevention
advertisement, can also be used to teach about growth in mathematics
courses. But the first thing we should ask, given that it has a dramatic
impact, is if it convinces students that what it shows can actually
happen? We must be aware that all kinds of fantastic effects can be
created by computer simulation on video and that children seeing them
do not relate these to the real world. Another question is the following:
Given the fact that so many dominos fall so quickly, how can we observe
the pattern of a long period of slow growth followed by a short period
.of rapid growth, in the model that we observed in the statistics for the
spread of AIDS and the growth of population and debt?

To convince students that what they saw can actually happen, they
must have the experience of modelling what they saw in the video.
So giving sets of fifteen dominos to teams of students, we have a
competition to put them in an arrangement with equal spacing between
the rows of dominos, to fall the fastest in a chain reaction. Here are
some of the possible arrangements or patterns (Fig. 7). We can know
the winner in a second, but after it is over, we have an opportunity to
analyse how the dominos fall within each pattern. In looking at the
a linear pattern A, we see that the dominos fall one by one; in the
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Fig. 6 From the video Fulling Dominos
and the Spread of Aids ©1993 John Golobe

second pattern B which falls down more quickly, dominos are falling in
groups whose numbers increase like an arithmetic series 1+24-34+44-5.
In the third pattern C we have groups of dominos falling in a geometric
series 1+2+44--8. If we call the groups of dominos falling simultaneously
“tiers”, then the total in pattern C has four tiers and the second pattern
has five, so pattern C falls more quickly. Of course the linear pattern
A falls the slowest. Once students have seen the video and have tried
the model, they are ready to learn more about the concepts behind the
models. The first is to find the relationship between time and the total
number of dominos which have fallen, so we will have students record
these numbers with the time on a table (Fig. 8) and make a graph (Fig.
9). When we compare the graphs, we see not only that pattern C falls in
the shortest time but that it starts slowly and finishes quickly, because
almost half the total falls with the last tier. We will go into more detail
about this later, but here is the pattern we observed in real growth
phenomena. It is important for students to gain an understanding of
the structure of these models because we want to extend them to make
predictions about the future course of events. So we should ask students
“How many dominos would you add to each pattern to extend them
to the next tier?” The first pattern is easily extended and so is the
second, but the third presents a problem because when we try to add
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more dominos to make the fifth tier (Fig. 7), they get in each others
way. We can't extend this pattern in the physical sense, but when we
represent the numbers of dominos in the tiers as terms of a-sum, then
we can extend it numerically by adding terms inductively.

PATTERN C: 5 TIER TOTAL =1+2+ 44+ 8+ 16

Students can also extend the other patterns inductivély and record the
results on a table and then graph them. '

The graph itself is a model which offers us new means of analysing
growth. As models, it should be possible to extend the graphs without
looking at the tables of values. Here is the kind of inductive thinking
that student would need to do. The numerical models were extended
by increasing the last term of the sum. The graphical model will be
extended by locating the next point (Fig. 10). The graph of the linear
pattern is easily extended by increasing the height of every column
by 1. So to locate the next point on a coordinate plot, we go over 1
and up 1. The second pattern B that is the arithmetic pattern has an
increase of 2 in the second column and 3 in the third. So we locate the
y-coordinate of the next point of the plot by adding a number equal to
the number of the point in the sequience we are plotting.

Extending the graphical models pointwise gives us an opportunity to
draw the slopes of the graph to see how the direction of the graph is
changing, (Fig. 10), and with it measure how fast the totals in each
pattern are increasing. But most importantly , we have an opportunity
to introduce the concept of “rate of increase”, as represented by the
slope of a graph and use it to measure the growth of the totals over

time. : '

We are employing a sophisticated concept of slope to represent the rate
of increase without using algebra or calculus. We are not even using
the slope formula. We are doing it very concretely and intuitively, and
when we do it early with a model like this, we plant the seeds for later
instruction. Then when we do it formally, studenis will understand it
better. They will have an appreciation for what it means (“Oh yes, we
were doing the modelling with the dominos and the slope of the graph
tells us how many dominos per row were falling.”)

Now lets extend the third graph (Fig. 10) and see how its slope changes.
We can answer the question about locating the next point without
looking at the table of values. What is happening to the rate of increase
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in going from one term to the next? Since the third term increases by
4, we should write this increase as Az = 2°~! to make it clear that we
are computing the increase in the y-coordinate of the third point. So
the increase in the fourth
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Fig. 11 Extending the Model by Induction and
Comparing the Doubling Times for Different Patterns

point’s y-coordinate is Ag = 24}, Now we have an inductive formula,
for extending the graph: A, = 2771,

We have introduced the concept of slope for showing in what direction
the graph is going and for measuring the rate of increase in the total.
But another observation we should make about the graphs of patterns
B and C is that their slopes, which are the rates of increase in the totals,
are themselves increasing. These are examples of accelerating growth
which we usually don’t see on an elementary level, and not until the
second derivative is taught in calculus. This is important because we
want to find out what happens to the graphs when they go higher. We
can see plainly that graph of C goes higher than B by extending them,
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but not that its slope is increasing faster than the slope of B (Fig. 11).
This is because when the slopes go higher than 4 or 5, the increase in
the angle of inclination becomes less and less. For instance a slope of
45 looks like it is parallel to a slope of 55. Only when the slopes are
in a range of about 1 to 4 can we really see a difference in their angle
of inclination. But it is at the upper end that the graph of pattern C
pulls way out ahead of the other two (Fig. 11). So what we can do to
highlight the changes in the totals when they are large is to shade in
the intervals of times it takes for them to double. Starting with a total
of 3, we show when it reaches 6 by shading the interval of time it takes
t0 go from 3 to 6 and then from 6 to 12, alternating the color of vertical
bands from dark to light. We see that the linear pattern A does not
get very far. The second pattern B, which is quadratic, doubles four
times within 13 units of time. When we compare the two graphs we
see that the bands increase in width but the increase for pattern B is
less, so it takes less time for its total to double than for A’s. Paitern
B’s rate of increase (slope) is increasing faster than pattern A’s which
is constant. ' :

Now lets look at pattern C (Fig. 11). There the doubling periods
are narrower, so its total is doubling in less time or faster. But the
important thing to notice is that these widths don’t get wider and so
the doubling periods are constant. Hence this type of growth’s rate of
increase is increasing faster than the others even though we cannot see
it from the graph.
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With growth that has constant doubling periods, we will always observe
in rescaling its graph the characteristic pattern of a long period of slow
growth followed by a short period of rapid growth. This is because with
50% of the total growth occurring within the last doubling period, the
initial 50% of the growth must be spread out over all the other doubling
periods which precede it. If there are 10 doubling periods, this would
mean the last 50% of the growth occurs within 10% of the. time and
initial 50% of the growth occurs within only 5% of the time while initial
- 50% is spread out over 95% of the time. With 20 doubling periods, the
last 87.5% of the total growth occurs within the last three doubling
periods which is 15% of the total time. By carry the doubling process
further, more of the total growth is squeezed within a shorter portion
of the time making for the short period of rapid growth. Herein hes
the danger we have talked so much about.

We have strayed in our analysis from the heuristic modelling we need to
make our predictions credible, so let us return to graphs of the dominio
model. There is yet another way to compare the slopes directly when
these graphs have large totals. We can do it by “rescaling” their graph
(Fig. 12). What we have done is compress the vertical axis and stretch
the horizontal axis. This makes the slopes at the upper ends have
different angles but does not change their numerical values. Lets look
at an example. The 8th increase of pattern C has a slope of Ag = 27.
If we compress the vertical axis by 1/4, it appears that we are dividing
the numerator of the slope by 4. If we stretch the horizontal axis by 8,
then it appears that we are multiplying the demoninator of the slope
by 8. So these changes together make it appear that the slope of the
corresponding segment on the rescaled graph has a slope of 27/(4)(8)
or 4. The slope of graph C can now be distinguished from that of B by
the way it bends upward.

3. FITTING THE DOMINO MODEL TO REAL DATA

These graphs are meant to represent the ways dominos fall down, and

that was meant to model the way AIDS is spread in the population. It

is clear which pattern falls the fastest, but the question is which model

best represents the spread of AIDS? To answer this question, we will’
rescale each of the graphs A, B, and C to see which best fits the data

on the spread of AIDS (Fig. 13).
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When we say “fit the data”, we mean have the graph go through or
near as many points as possible, preferably at the high end. We shouid
mention here that rescaling of a graph can be done dynamically on a
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computer that operates with Macintosh or Windows. By selecting the
graph and grabbing the corner handle of the “marquee” it is in with
the “mouse”, and then by dragging it diagonally down to the right,
all of the forms shown in Figs. 14, 15 and 16 can be obtained in one
continuous motion. This represents the simultaneous compressing and
stretching of the graph. The dark rectangle is what happens to the box
which contains the graph. With this kind of control, we can adjust the
shape of the graph to fit the data by watching where the curve goes
while dragging it. We don’t need to solve systems of equations. It is
all very visual and intuitive. What we see here is that this linear graph
goes near the first points of the data (Fig. 14) but misses the ones at
the high end. So it cannot be a very close fit. We have a better fit
with the second graph B (Fig. 15). It works well with more of the data
points, but again misses by a wide margin at the top. And finally the
third graph (Fig. 16) fits the data most closely.

So the pattern of dominos which falls like a geometric series really tells
us a lot about what is happening in the spread of AIDS, at least as
far as this data goes. Does it have the pattern we are looking for?
Yes, it has a long period of slow growth followed by a short period
of rapid growth. Is there any connection between those two periods?
Yes! They are part of one function which is the point we are trying
to make. Have we convinced students that the spread of AIDS puts
everyone who engages in sexual activity at risk and that they should
modify their behavior? This is a question for students to answer.

4. MODELLING PROPORTIONAL GROWTH

The model of growth based on the domino patiern is intended to show
how a long period of slow growth leads to a short period of rapid growth.
However what may appear like rapid growth on a small scale (Figs. 17,
18), may not appear to be rapid on a large scale

Comparing the Growth of Totals in Patterns

A:1+1+4.. . {y=1z}, B: 1+2+3... {y=2%/2+2/2},

C:1424+44+m{y=2"-1}
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The graph of pattern B, which is quadratic, looks like it is exponential -
on a small scale (like C), but linear (like A) on a large scale. Therefore
appearance alone cannot adequately describe growth of the type which
characterises the spread of AIDS and the problems of overpopulation
and debt. The characteristic which distinguishes this type of growth
from all others is that its rate of increase is proportional to the quantity
that is increasing. Mathematicians would start with this deﬁmtlon and
derive the exponential growth function:

(=)
(=)

‘We could have derived a similar proportionality by induction. However,
we would like to base our model for exponential growth on this
definition, too, not for the sake of mathematical rigor, but because
this is the way things grow in nature. Living organisms tend to grow
in proportion to their size, as do populations of organisms. Disease
tends to spread in proportion to the number infected. There are
environmental factors which limit growth, but growth in nature is
essentially exponential. We can find man-made relationships which are
exponential, as with the compounding of debt. If is this proportionality
which characterises growth - the more there are, the more there will
be - that causes the upsurge which in turn causes the economic, social,
and environmental problems that we are witnessing.

=k f(z) =ae®

We could simply adopt the mathematicians algebraic models, but we




256 Primary and Seccindai'i; Exaﬁlples , [Sec. E
also want to show students how growth in nature actually happens.
So what we want is a model for proportional growth which is
dynamic, which is intuitive, and which teaches students by giving them
experiences they can participate in. What we want to do is model
proportional growth heuristically.

Such a model can be created by attaching little markers to an elastic
band at equal intervals. In the diagram below (¥ig. 19) three such
markers divide the the length from 0 to A into fourths. When the
end of the the band at A is stretched to position B, so that the third
marker coincides with A, the original length OA is now divided into
thirds, so that the new length OB represents a growth of QA by one-
third; OB=(4/3) OA. By repeating this process from B to C to D,
the lengths increase by one-third each time. This may be represented
by multiplying the original length by the improper fraction 4/3 three
times: OD = (4/3)3(0A).

What students see in using the rubber-band model is direct evidence
that while the increase becomes greater each time they do a stretch,
it is always proportional to the length that is increasing. They can
understand how proportional growth starts slowly and then accelerates,
because the rubber band model, like the domino model, shows how it
happens. And when exponential growth is represented algebraically
and then applied in studying the problems that it poses such as
overpopulation, runaway debt, and epidemics, students will be able
to better understand the need for prevention.

There is another version of this stretching model for proportional
growth which has a dynamic to show how the rate of growth grows and
gives us the ability to derive several important properties of exponential
functions. But it also has the virtues of being more easily understood
and used by students on all levels to construct exponential growth
than algebraic models. This is the “projection model” for proportional
growth. Drawn below (Fig. 20) is the model for a growth ratio of 6:5
or a growth rate of 20%. The growth of a quantity is represented by
an increase in the height of a column. Since the scheme of lines divide
a column in six equal segments, growth from the fifth to the sixth lines
always increases the height of the column in the ratio of 6:5. But in
this model, the columns are spaced so that the height a column grows
to the same height as the next column at the start of its growth. So we
can construct the repeated growth of a quantity by increasing its height
from the fifth to the sixth line, translating (projecting) this height to
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where it meets the fifth line again, and then repeating this cycle. By
putting all the columns together with even spacing, (Fig. 21) we have
a graph of growth over time. In this graph we can observe how the rate
of growth increases with time.

As a column can be positioned to meet the fifth line whatever its heighi:,
we can use this model to construct the growth of a quantity of any initial
size (k). As the number of lines in the scheme of this model can be
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varied, it can work with any growth ratio {a/b:a > b,a € Z,B € Z}.
And as students can generate growth by recycling (n), they can
construct the graph for exponential growth: y = k(a/b)". We can
also plot the graph of exponential growth by calculating with this
formula, but cold calculation does not give students the same feel for
how fast growth increases as does the dynamic of constructing it with
the proportional projection model. And when the graph is rescaled to
show a long period of slow growth followed by a short period of rapid
growth, then the formula for exponential growth, which is its algebraic
model, will be better understood.

Several important properties for exponential growth that we might
establish with the use of logarithms or later with calculus, are
immediately derived from the proportional projection model. One is
that all exponential growth has a constant doubling perlod

f(@ + k) = 2f(c)

Take one section of the model in which doubling occurs (Fig. 22).
For every similar section, whether smaller or larger, doubling will also
occur and it will happen within the same number of growth cycles
(which could be fractional).

Because the proportional projection model is a step function, we can
give students an idea of what the “integral” or area under a curve
means without the veil of the “limit”. For instance the area of four
consecutive growth cycles (Fig. 23) could represent the cost of tuition
for four years at a university with r% annual growth due to inflation.
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By making the growth cycles more frequent, we pass to the area under
a curve. This can be demonstrated with a graphing spread sheet by
changing a parameter. :

Because the proportional projection model works by cycling, we can
introduce students to the idea of recursion before they learn about it
with formal notation.

The proportional projection model is the link in the development of
students understanding of growth from the concrete operation of the
domino model to the abstract symbolic notation of algebra. With it
" we can interpret operations of exponents, |

(@) (@)™ = (@)™, (@)™ = @™, a"" = (ab)"
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as well as give meanings to the zero and negative exponents. By
reversing the direction of the model, we obtain a model for decay or
proportional reduction. With it we show that the inverse of 6/5 is
(6/5)"} = 5/6. (Fig. 24)

Even after exponential functions have been introduced algebraically,
the projection model for proportional growth can serve as a stepping
stone between the interpretation of a problem situation and the
derivation of an exponential equation for its solution. For instance the
problem “How much money ¢ would you have to save at 5% interest
each year if you wanted to have $8,000 in four years?”,

(1.05) + (1.05)% + (1.05)%t + (1.05)% = 8,000

dan first be represented with the four-cycle pro jection above by letting
r = .05 and their total = $8,000. '

A problem in exponential decay “How many coins are in circulation
after four years if 1,220,000 are minted yearly and 5% are lost yearly?”
can be represented by reversing the four-cycle pro jection (Fig. 24) and
then letting ¢ = 1,220,000 and 7 = —.05. With this, we can represent
the total with the computation:

(1—.05)(1, 2220, 000)+(1—.05)*(1, 220, 000)+. . +(1—.05)%(1, 220, 000)

Being able to represent exponential growth/decay with the proportional
projection model gives students the framework they need for making
applications of geometric series and mean to problems with inflation,
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bank interest, carbon-dating, population growth and other processes
which grow by recursiomn.

What kind of model do we need for teaching about growth? If our
purpose were to have the most accurate and complete description of the
growth process, we might use the model demographers, epidemiologists,
and statisticians use: a logistic equation (Fig. 25).

o)
f(t) = A P -
1+ Be Ak U /
L
A
T
|
o}
N
TIME
Fig. 25

Its curve can be made to fit a plot of growth data by adjusting the

parameters not only up through the period of rapid increase, but also
as growth slows as it reaches its limit. This model provides what the
researcher needs, but our purpose is not to train researchers. It is
to teach students to understand the consequences of growth before
it reaches the limit. So our model has to show how this upsurge
occurs and convince people that it must be prevented from happening.
The domino model gives a dramatic and convincing demonstration of
accelerating growth. The proportional projection models not only gives
us an expanded range of growth to model, but also the ability to analyse
and draw conclusions about its consequences.
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Mathematics Projects Course
in Teacher Training — :
Constructing Nice Puzzles

Yasar Ersoy

Middle East Technical University, Ankara, Turkey

and . . ' '

Tibor Nemetz

Mathematical Inst. of the Hungarian Academy of Sciences, Budapest,
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SUMMARY"

This paper provides arguments for the inclusion of project-type course
into the official programme of the pre-service training of mathematics
teachers. These arguments are given in the form of 6 Theses and are
illustrated by using Newspaper Puzzles as modules for the course. A

course schedule is suggested and ndain features are described. The task

of assessing and evaluating is discussed.

1. INTRODUCTION

The most important factor in teaching any non-traditional subject is
the teachers’ attitude and educational background. This applies to the

.. teaching of modelling and applications, as well. During the pre-service

teacher training, however, prospective teachers hardly have casual
occasions which would provide experience for their future profession.
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. | -
Therefore, we recommend the inclusion of a “Projects in Mathematics

- Education” course into their educational programme, where, preferably

in small groups, they could exercise the designing, developing phases
of the construction of feasible school projects. Such a course could
also provide a pattern on how to implement and guide application-type
work in the school environment.

Acknowledging this need, and observing that the present school-
practices do not favour teaching gennine applications of: mathematics
to real world problems, such a course had been introduced into the
compulsory part of the teacher training in the Middle East Technical
University, Ankara, Turkey in 1990. Our experiences with this course
are embedded into the present work. As for details of the educational
system in Turkey and the place of the teacher training in it, the reader
is referred to Aksu (1990), Aydin (1989) and Ersoy (1992).

In this paper we are mainly ‘concerned with the applications side
of the dichotomy of “Modelling and Applications”. Even here,
our aim is to show how to prepare student-teachers fo insert
discussions on applications, items dealing with applications from their
environment into the traditional mathematical curriculum, using them
as illustrations or for introduction of classical mathematical questions.

We illustrate our ideas through a common- “Newspaper Puzzle” named
by the students as “Pascal Puzzle”. Only as a side remark, we would
like o mention that such puzzles were really nice brain-teasers even a
decade ago, while now they need a few minutes of PC programming,

-only. An aspect, which should be taken seriously when planning

curriculum changes.

3

2. PROJECTS IN MATHEMATICS TEACHER
EDUCATION: ARGUMENTATION '

There is a lot of discussion about the professional qualifications of
mathematics teachers and their training to develop these qualifications.
It is more or less generally accepted, that the professional knowledge
of teachers include at least three categories:

s Knowledge of the subject, i.e. mathematics.

o Knowledge of pedagogy, in general and didactics of mathematics,
in particular. ) _ ' _

e Knowledge of management within the school environment.
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The importance of these categories has different weights in views of
different researchers, see e.g. Romberg (1988), Ernest (1989). Good |
subject matter preparation is necessary but insufficient.

Thesis 1: Sound theoretical background is only one of the pre-
requisities to effective teaching.in any area. Without supplemented
methodological, didactical knowledge, no success can be expected.

Supporting (negative) evidence is given by the examples of the teaching
~ probability, statistics, and computers throughout the world. The
present generation of teachers may have attended short courses on these
areas, but these courses had no time to discuss (or even touch upon)
applications or didactical questions. As a result, teachers fail to see
their importance, and are afraid to include them in their classroom
practise. A project course could help to overcome this difficulty to
some extent: prospective teachers could deal with applications taken
from their own environment, and discuss how to attack these problems
in the classroom. !

Our second thesis is strongly connected to this.

Thesis 2: In any established or forescen area of education, school
subject, the instruction of teaching methods should be included in the

pre-service education programmes.

Many people share the opinion, that the profession of mathematics
teachers requires a synthesis of mathematics and educational
knowledge. As an example, McNamara (1991) claims, in connection to
the reforms of teacher training in Britain and the USA, that prospective
teachers must be able to convert knowledge of the subject into a
teachable subject for a wide range of pupils. This view is vital regarding
applications. It does not suffice to know what is applicable, but also
HOW TO COMMUNICATE this knowledge to the students. A recent
case study by Y. Toluk (1994) shows the practising secondary school
teachers also share this view. ‘ : :

Again, we argue, that a good way to prepare the students for this job
is a project type work, where they can discover the “Know-how” for
themselves, and what is at least so important, observe the “dead-end
streets” on the way to communicate the knowledge to others. This
implies another Thesis:

i
Thesis 3: Activity, discovery approach is needed already during the
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{
_pre-service teacher training in order fo exemplify and secure ways to
teach understanding the tasks, utility, and the function of mathematical
modelling and applications.

In many countries, this is in conflict with existing teacher training
programmes. A “small step” policy, as suggested by Black at al
(1993), may help to infroduce changes. Such a small step could be
the introduction of a project course into the programme.

In our observation, projects are highly motivational to most students
because of their active participation and the close contact with
supervisors Students appreciate topics which orientate them not only
toward the content of current school mathematics, but also relevant to
their future job. Our next thesis comments on this.

Thesis 4: In the classroom, examples of applicability must have
actuality. Future teachers should be able to select appropriate problems
from their “present time” surroundings. There is a need for“ever-
green”, always actual tasks.

An extensive bibliography on applications and modelling topics, which
can be successfully treated at school level, is given by Kaiser-Messmer -
et al. (1992). The importance of ever-green problems lies in the fact
that the treatment during the pre-service period can be copied during
the in-service years. Pupils will view such problems as actual ones, and
the preparational working time of the teachers, especially during their
first practising years, is considerably decreased. Our “Module” example
Pascal Puzzle is an example for such ever-green tasks. A rich source of
such tasks can be found in the area of secret codes (see Nemetz, 1991).

Thesis 5: Teachers’ search for real world problem should be governed
by the following main steps: '

a) Fix the conclusions to be arrived at.

b) Collect matching problems. |

c) Analyse prospective models and methods of solution and
choose one of the problems for the classroom.

d) Sequence the tasks and organise classroom discussions.

e) Be prepared to direct the process of making conclusions and
formulating the results.

If teachers do not get accustomed to this process during their training
period, they will not have time and will not be able close up later. It
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may be interesting to note, that a different way was more natural to
course students. They followed a similarity principle: The Newspaper
puzzles of Example 2 and 3 were collected by students.

Work in the project course should proceed along the lines that could be
followed in the school practise. Qur view in this respect is formulated
a5 _

Thesis 6: Tasks for school pupils should be organised along 3 main
steps:

a) Understand the important features of the problem.
'b) Discuss, analyse the problem, discover applicable methods.
¢) Formulate the conclusions. -

Here the last step usually does not get the necessary attention. It
cannot be stressed enough how important it is to have an easy-to- read
narrative formulation.

3. PROPOSED COURSE SCHEDULE AND MAIN
FEATURES

We have found it useful to organize the project course for student
teachers into three periods.

Period 1 (2-4 weeks): By frontal instruction, discuss the general
goals of the course and offer a variety of application tasks while
specifying the immediate educational goals. Let the students choose
one of them according to their interest. By further frontal discussion,
provide the necessary theoretical background in a concise form. Prepare
a working plan for the second period.

Period 2 (4-6 Weeks) Independent or small group work: lerary
search, computer use, consultations, joint discussions.

Period 3 (3-4 weeks): Writing-up, reporting. Oral presentation by
the students.

This time grouping is likely of general validity. Specific to teacher
training is the emphasis on the exemplifying of views about designing
and developing materials for school use. They are as follow:

e Encourage active participation'of students instead of 1ettiﬁg
them to stand by in an observational capacity.
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o Activities should be designed to provide stimulation and
challenge to students. ,

« The course should be based on solving school level real problems
by scientific enquiry and other intellectual activities which require
critical thinking from the students.

e Widely available technology should be used during the entire work
to pave the ways for school utilization.

e Student teachers should feel the necessity of designing and
constructing worksheets and handouts as teaching aids.

o Modules treated should connect different topics within mathematics
and should form interdisciplinary links with other school subjects.

4. CRITERIA FOR ASSESSMENT AND EVALUATION

The essence of assessment in the project course is its continuous
nature. This continuous assessment focuses on the following points
and activities:

e Response to weekly scheduled sets of questions and tasks by the
entire group or its members.

e Evidence of study of the mathematical topics related to
the particular project.

e Developing teaching aids and materials.

e Finding possible project topics, collecting samples of materials. -

e Written documentation of the work and the findings.

e Oral presentation of the report in front of fellow students.

The written documentation is prepared in two steps:

e an initial submission by the group or the individual, consisting
of a statement of the problem under investigation and an outline
of the working method (in about one page), and

e o final report, giving details of the mathematical analysis and
educational aspects of the project topic, and the applicable -
teaching and learning materials.

Note: the crucial issue in such a course is the problem of giving credits
to the students and assessing them. The authors would be happy to
collect suggestions and share experiences.
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5. ILLUSTRATING EXAMPLES

Our ideas are illustrated here by a common “Newspaper Puzzle” named
by the students as “Pascal Puzzle”. This was originally intended to
discuss linear system of equations. It involves arithmetics of digits,
with a few unknown digits, only. Such a puzzle is called NICE if it
has a unique, non-negative solution. The simple problem of solving
the puzzle evolved to become more complex: the task was to construct
NICE puzzles. The graphs we are using may be considered ugly ones.
We use them, however, purposefully: the most simple text editor can
be used to reproduce them, they do not suppose any knowledge of
computer graphics or programming,. '

Example 2 and 3 were collected by students, and the possible
educational goals were derived after the examples had been collected.
We simply edited their suggestions without adding any additional
comments.

EXAMPLE 1: PASCAL PUZZLE

This is a common newspaper puzzle offered regularly for children under
different names. This regularity makes it “ever-green”. A triangle
shaped figure is given with empty boxes, except a few where usually
positive numbers are given. The task is to fill in the empty boxes
with numbers in a way, that every number is the sum of the numbers
immediately under it. Instead of the customary fancy forms, we .
illustrate this problem by a figure which is easy to implement by a
text editor, i.e. in a way, which is accessible to students and teachers.
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The solution is straightforward:

Of course, we do not wish to suggest the solution of such a problem
as a task of the project course. This problem can be utilized in a
different way. The construction of such puzzles attracts the attention
of students, and it can direct future teachers to generate a number
of similar individual problems for classroom use. In this respect we
have to quote our students who have found the above example to be
“not & nice problem”, because one of the boxes in the completed figure
contains a negative nuraber. They have defined a nice puzzle as one
which contains positive digits in the initial setting, and which has only
positive entries in the completed form. Now we can pose the task to
construct nice puzzles.

A variety of educational goals may be specified, like

e exercising the solution of systems of linear equations

e finding relations between the number of unknowns and that of
equations

e introducing linear independence

e pointing out the utility of the inverse matrix for solving
equations with the same matrix but with a different constant vector

o writing computer programmes to solve linear equations.

e comparing different methods for solving systems of linear equations

e discussing the complexity of computer programmes

e finding all “independent” 4-places, as a combinatorial problem

o designing algorithms to generate all or a randomly selected
independent 4-place

e designing algorithms to fill in all possible ways a chosen
independent 4-place, or to fill them in randomly

e writing a programme documentation

e generalize the given problem to larger arrangement

e introduce the idea of the Pascal triangle.
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EXAMPLE 2: INSERT-TYPE CROSS-WORDS PUZZLES

These types of cross-word puzzles ask for completing a usual
arrangement of boxes from a given list of strings of letters or digits,
like the following figure and list:

5-letter words: 12345

. 13579
52846

92226

222

314
524

I
|
I
I
[ 3-letier words: 152
I
I
I
I
I

2-letter words: 42, 44,
45, 72

Now a “nice puzzle” is defined as one which has a single solution, with
the possible exception for symmetry.

Students’ activity can be directed towards

s to write down how THEY have solved it

e discuss/collect ideas to solve

s extract features for solving

e prepare algorithms to solve

e discuss how to simplify and complicate such puzzles

e prepare algorithms for constructing nice puzzles

¢ by simulation, find out the chance that a randomly ﬁlled
-arrangement provides a nice puzzle

EXAMPLE 3: MAXIMIZING JOINTS-VALUES

These are less frequent but nevertheless typical puzzles. They consist
of horizontal and vertical box-bars. Their intersecting boxes are called
joints, which play an important role. Again, there is a list of strings,
but this time the list contains essentially more strings than necessary to
fill in the boxes. Symbols in the strings have numerical values assigned
to them. The task is to find a solution for which the symbols placed into
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the ”joints” of the figure sum up to a maximum. A simple illustration
is given below. Here the joints are represented by the boxes

|

Symbol values:

Digits: 0 point
Yowels: 2 points
Consonants: 3 poinis

|
I
|
I
I Il Ii ]Str'ns:
I
I
!
I
!

.
1 ! S L ABAS6 'STVAG
| | ABCD5 WTXAS8
| | AX3R4 M5678
| DBSEM MMNNO

DT5EM o121c

The educational goal of treating such puzzles is to prepare the way for
mathematical (economical) programming,. ‘

CLOSING REMARKS

In this paper we have argued for the inclusion of a “Projects in
Mathematics Education” course into the official programme of the
pre-service teacher training. Based on our experience, we propose
that this course be run preferably in small groups, such that student
teachers could effectively exercise the designing, developing phases
of the construction of feasible school projects. Such a course could
also provide a pattern on how to implement and guide modelling and
application type work in the school environment.

Our experience is definitely positive. Nevertheless, we have encountered
one problem, namely the problem of giving credits to the students and
assessing them. The authors would be happy to collect suggestions and
share experiences.
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SUMMARY

Laboratory interfaces-devices that. enable students to collect, store,
and analyse scientific data through the use of computers and electronic
sensors—are a relatively new technological development, although their
use is already widespread in secondary science classrooms. Due to
the recommendations of the Curriculum and Evaluation Standards for
School Mathematics (National Council of the Teachers of Mathematics,
1989) and the resulting interests in real-world data and mathematical
modelling, however, the use of interfaces is growing among mathematics
-educators, as well. In this chapter, we explore the use of laboratory
interfaces in the mathematics classroom by addressing the following
questions:

e What is the laboratory interface?
®» Why use the laboratory interface?

¢ How is the interface used in the classroom?
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1. INTRODUCTION '

Perhaps nothing has influenced American mathematics education
more in recent years than the development of technology.
Throughout the nation, secondary students are using calculators and
symbolic manipulators to complete complex arithmetic and algebraic
calculations, graphing packages to visualize mathematical expressions
and explore geometric relationships, spreadsheets and data analysis
packages to perform statistical functions, and CD-ROM technology to
generate and explore data sets that would otherwise be inaccessible.
In the United States (and around the world), technology has been
embraced by teachers and students alike. '

Laboratory interfaces—devices that enable students to collect, store,
and analyse scientific data through the use of computers and electronic
sensors—are a relatively new development, although their use is already
widespread in science. Due in part to the recommendations of
the Curriculum and FEvaluation Standards for School Mathematics
(National Council of the Teachers of Mathematics, 1989), however,
interest. in laboratory interfaces is growing among mathematics
- educators, as well. In this chapter, we present an overview of these
devices, discuss the reasons that they are growing in popularity, and
represent several activities that illustrate their use in the mathematics
classroom. ' '

2. WHAT IS THE LABORATORY INTERFACE?

In science, a key to the construction of valid models is the collection
of accurate data. Much of the information that we would like to
gather, however, is not directly observable or quantifiable. For instance,
although we can tell if something is very hot or cold by feeling it, we are
unable to quantify temperature with any degree of accuracy. Similarly,
-although the long-term effects of radioactivity can be observed,
radioactivity and ifs short-term effects can neither be observed nor
quantified. In order to solve the problem of collecting scientific data
instruments have been developed that transfer information about the
physical, biological, or chemical quantity of interest to an observer
(refer to Fig. 1).

All laboratory instruments that accomplish the task of measurement
share the same structural design. The instrument interacts with the




Ch. 20] Using the Laboratory Interface 277

quantity of interest and this interaction alters the level of some
indicator.

Quantity || Instrument |_,| Observer
to Measure

Fig. 1 The Role of Instruments in Data Collection

As an example, the horizontal or vertical level of ﬁlercury in a
thermometer is an indication of temperature, whereas the markings
on the thermometer allow observers to quantify this level. Similarly,
the color of litmus paper is an indication of the pH of some substance,
whereas charts of pH-color equivalences allow observers to assign a pH-
level to that color.

Although “rough” estimates of pH and temperature can be obtained
using litmus paper and thermometers, respectively, the new emphasis
on experimentation, real-world data, and modelling in the mathematics
classroom requires greater measurement accuracy. In order to collect
research-grade data, scientists typically use electronic instruments, such
as thermistors (for temperature) or pH electrodes. In general, the
structure of these devices resembles that of traditional instruments.

As is illustrated in Fig. 2, electronic detectors interact with the
quantity of interest to produce a small electric signal (the indicator).
This signal is conditioned by simple amplifier circuits and transmitted
to data processing circuits, which use an appropriate algorithm to
transform the signal to a meaningful number. Read-out devices, such
~ as meters, digital displays, or printouts, then present this number to
the observer. '

Although the use of electronic instruments increases the accuracy
of data collection, these devices are not without their drawbacks.
For one, electronic instruments are generally designed to perform
a specific function. To measure pH, pH electrodes generate weak
electrical signals, which are then passed through data processing
circuitry to produce a pH reading on the display. Because the data
processing circuitry is measurement specific, pH electrodes are only
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able to produce pH readings. To measure temperature, light, pressure,
radioactivity, or any other attribute, other instruments are needed.
As a result, the cost of equipping each laboratory station with the
electronic instrumentation needed to collect research-grade data has, .
until recently, been prohibitive.

Quantity Detector — ) Data > Readout [__y, " Observer
to Measure > Processor
T A T
Power Supply -

Fig. 2 The Structure of Electronic Instruments

However, the development of laboratory interface devices and the
widespread availability of personal computers are alleviating this
situation. As is illustrated in Fig. 3, laboratory interfaces receive and
digitize the weak electronic signals produced by the sensor component
of electronic instruments, enabling the computer to interpret the output
of the sensor. Software loaded into the computer performs the necessary
algorithms to convert these signals into readings of pH, temperature,
voltage, and so on. Lastly, the computer’s monitor displays the
readings to observers. Thus, an interface uses only the low-cost sensor
component of a measurement-specific device. The data processing and
display functions of the device are performed by the computer.

In the American market, several interfaces are currently available. Two
of the most widely-used interfaces are produced by SCI Technologies
- (1716 W. Main, Bozeman, MT 59715) and Vernier Software (2920 S.W.
89th St., Portland, OR 97225), respectively. The SCI interface is IBM-
compatible, whereas the Vernier product can be used with Macintosh,
IBM, or Apple II computers. In addition, Vernier is releasing a portable
interface that is compatible with the Texas Instruments family of
graphing calculators and is designed for use “in the field.” '

Complete interface systems, which include the interface, the necessary
computer software and hardware, and a variety of sensors, can be
purchased from either company for about $750 US.
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Instrument Data
Computer
System Storage HTpLa
Ay
Quantity .
. Signal Data :
_.> o ¢ .y _l
o Detector >mm°nm+r: ing »| Readout |-»| Observer
Measure | -
A A A |
B R Fower Supply

Fig. 3 The Structure of Computer Interface Systems

3. WHY USE THE LABORATORY INTERFACE?

A major advantage of laboratory interface systems is coss. Although
interface systemns have only three primary components (the interface,
the computer, and sensors), they enable students to collect a wide
' variety of biological, chemical, and physical data. By comparison,
comparable measurement-specific devices can cost as much as $5,000
US. Furthermore, many classrooms are already equipped with
computers which makes the use of labora,tory interfaces even more
economical.

A second advantage of interface systems is the resultant increase in
power and flexibility in the lab (Furstenau, 1991). Because data
collection is controlled by the computer, students are capable of
collecting data very rapidly (at the rate of several hundred per second)
or very slowly (at the rate of a few samples per hour) In fact,
" the computer even allows experiments to be monitored overnight.
In traditional classroom settings, Whomever, these options are not
available to students. Furthermore, the sensors that accompany most
interface systems allow students to collect data that would normally
be inaccessible. For example, Vernier Software offers low-cost probes
that measure motion, force, ralmdiation,_ light, magnetism, and pressure.
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Once again, most science classrooms (and practi_caily all mathemaftics
classrooms) are not equipped to collect such a variety of data.

A

Fig. 4b

In summary, as tools to collect data, laboratory interfaces represent
state-of-the-art technology. However, in the schools, experimentation,
data collection, and the construction of mathematical models typically
occur in the science classroom. Thus, one can ask why the use of these
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devices is growing among mathematics educators. Of what use are
interfaces in the mathematics classroom?

In part, the rising popularity of laboratory interfaces is tied to the
current reform movement in American mathematics education. The
recommendations of the Cwriculum and Evaluation Standards for
School Mathematics (NCTM, 1989) have had a tremendous impact on
the objectives of American mathematics education. For instance, the
Standards have refocused attention on the applications of mathematics.
No longer is mathematics to be presented as an isolated set of skills
and procedures. Students in the mathematics classroom are to use
mathematics to explore “real” problems that arise in other subject
areas.

It is this attempt to connect mathematics to other subject areas
that leads to the use of interfaces. - Science provides some of the
richest applications of mathematics. In fact, mathematics plays such
a prominent role in the development of science that many are calling
for the integration of the two subject areas (Austin, Converse, Sass,
& Tomlins, 1992; House, 1986; Milson & Ball, 1986). Of course, data
collection is an integral part of science. To explore and understand the
“problems” of science, mathematics students conducting experiments,
collecting data, and constructing models. Thus, current efforts to
develop mathematics within the context of science-based activities
create the need to collect data. This, in turn, leads to the use of
laboratory interfaces. :

A related factor is the current interest in mathematical modelling.
At the recent ICTMA-6 conference, several models of the modelling
process were presented (e.g., refer to Fig. 5). Although each of

these models characterises the process in a unique way, each reinforces
the fact that real-world modelling is driven by the desire to answer
questions about real problems.

In the classroom, the point at which students enter the modelling
process is varied. In some settings, teachers introduce the real-
world situation, pose questions about the situation, identify variables
that affect the situation, and even present data that reveals the
behavior of these variables. In these cases, students seek to construct
a mathematical model that mimics the observed behavior of the
experimental variables, use thei model to generate predictions about
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the original situation, and compare their predictions with the actual
behavior of the situation.

Mathematical Model SOlU’ti(?n to the
MATHEMATIZE Mathematical Problem

‘ SOLVE Solution to the |
Real-World Problem Real-World Prablem

Simplified . Solution to Simplified

SIMPLIFY Mathematical Model Mathematical Problem
Simplified : Solution to Simplified
Real-World Model Real-World Problem

Fig. 5 Hirstein’s (1991) Model of the Modelling Process
‘ (used by permission)

On the other hand, a more “rgdical” approach to modelling is
advocated by the authors of the Standards, as well as by contemporary
mathematics educators such as Gurtner, Ledn, Nufiez , and Vitale
(1993). According to these authors, mathematical modelling should
increase students’ understanding and appreciation of mathematics,
and prepare them to solve real-world problems. To accomplish
these objectives, students are to be involved in the entire modelling
process. That is, students identify real-world situations of interest,
pose questions about these situations, identify relevant variables, design
experiments that reveal the behavior of these variables, collect data,
and so on. : :

Although both of these approaches allow students to use mathematics
to solve real-world problems, the latter approach attempts to do so
within a context that is “real” to the students. In particular, Charles
and Lester (1982) define a problem to be a task for which (1) the person
confronting it wants or needs to find a solution, (2) the person has no
readily available procedure for finding the solution, and (3) the person
must make an attempt to find a solution. If classroom modelling is
based on contrived situations that students have no stake in selecting
or desire to investigate, then we are not presenting them with real
problems nor are we truly engaging them in mathematical modelling.
To prepare students to use modelling to solve real-world problems, the
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Standards and other sources advocate the use of problems that are real
to the students.

As mathematics educators adopt this latter approach to modelling
and students assume responsibility for selecting classroom activities,
the role of interfaces is increased. In the absence of adequate
instrumentation, students can only investigate problems or pose
questions about situations for which accurate data can be collected
using their own senses or traditional instruments. As a resul,
limitations in students’ ability to collect data significantly affects their
involvement in the scientific process. With laboratory interfaces,
however, data collection is driven by the questions that are asked.
- Students are able to investigate problems that might otherwise be
inaccessible and to pose questions that are real to-them. This is an
additional reason that the use of interface systems is on the rise in
mathematics classrooms.

4. HOW IS THE INTERFACE USED IN THE
CLASSROOM?

Quite simply, interfaces extend the range of situations that students
can investigate. For instance, most secondary students are introduced
to the mathematics of falling objects. An interesting extension of the
study of falling objects, and one that leads naturally into a discussion
about polynomial equations, is the study of motion down an incline
plane. Specifically, questions can be asked regarding the impact that
the angle of the incline plane has upon the velocity (and position) of
the object.

In general, the height of an object at any time ¢ is given by the equation
H(t) = —1/2gt*+vot+h,, where g represents the acceleration of gravity,
U, represents the initial velocity of the object, and h, represents the
object’s initial height. In the absence of an initial velocity, the height
is given by the equation H(t) = —1/2gt*> + ho. If an object is rolled
down an incline plane in which the angle of elevation is T' (refer to Fig.
6), then the downward force of the object would be altered by a factor
of sinT'. Thus, if the objects starts from rest, the height of the object
at any time ¢ is given by the equation Hr(t) = —1/2(sinT)gt? + ho. If
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the angle of elevation is varied, then the resulting equations represent
a family of parabolic curves, as is shown in Fig. 7. .

Motion Detector

S

Basketball
To In’gerface

o

Angle of Elevation &2

Fig. 6 An Experiment to Investigate the Mathematics
of Incline Plane Motion

0.00
0.00 .

— 2,00 x

Fig. 7 Graphs of the Equation
h(t) = —Lg(sin )t? + 4 for 6 = 5, 15,30, and 80

The Vernier Softwa_ré Ultrasonic Motion Detector (available from
Vernier for $95 US) allows students to test these conjectures

and to develop the mathematics of incline plane motion through

experimentation. In short, the Vernier product emits ultrasonic pulses

and the time it takes for the reflected pulses to return is used to

calculate the distance, velocity, and acceleration of a moving object.
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In order to conduct the incline plane experiment, place a basketball
at the top of an incline plane and position the interface at the top
of the plane, as is shown in Fig. 6. Release the ball and allow the
instrument to record the distance between it and the interface. The
height of the ball at any time ¢ is found by multiplying the sine of the
angle of elevation of the plane by the distance between the ball and
the interface. For comparison purposes, data collected by the Vernier
Motion Detector for an angle of 15° is presented in Fig. 8. Note that
the experimental curve approximates the theoretical curve, although
the influence of friction results in slightly slower motion in the real-
world experiment.
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Fig. 8 A graph of incline data collected by the
Vernier interface for § = 15

The study of ‘astronomy offers an additional use of the interface, as
well as an opportunity to introduce inverse relationships. Astronomy
is of interest to many students, and one of the fundamental questions
in astronomy concerns the relative position of objects in space.
Specifically, one might ask how far a given star is from earth. Although
there are several methods by which scientists gather this information,
one approach compares the intensity of light emitted by a star of
unknown distance to the inte{nsi’ty of a “similar” star for which the
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distance is known. * For instance, suppose that the distance to star
X is known and that one wishes to find the distance to a similar star,
star Y. Using advanced instrumentation, it is possible to determine
the tatio of the intensity of star Y to that of star X. Subsequently,
the distance to star ¥ could be determined if the relationship between
light intensity and distance were known.

To some degree, we are able to determine the relative_:lﬁi:ight.ness of
comparable light sources with our eyes. However, we are unable to
quantify measures of intensity. To do so, scientists use phototransistors,
devices that generate an electric current that varies according to the
intensity of the light source. The SCI Technologies interface uses
phototransistors that return a measure of light intensity when directed
at a light source. :

Fig. 9 depicts an experiment in which students can determine the
relationship between distance and light intensity. In this experiment,
students construct a model of the initial problem, in which a light-
emitting diode (LED) serves as the star and a phototransistor serves
as an observer on earth. Students are interested in measuring the
intensity of similar “stars” at various distances. To do so, they.compare
the measured intensity of the LED at different distances from the
phototransistor.

Distance
< > "
: Phototransistor
* Light-emitting Diode ' ~ |1000 mv
1
— DAC 1
15-pin
Auxillary Plug

2

Fig. 9 An Experiment to Investigate the Relationship

* For a more thorough treatment of the techniques by which scientists compute distances in space, the reader
is referred to Amend (1969).
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Between Distance (to an Observer) and Light Intensity

One problem in this model is background light. Phototransistors do not
discriminate between light sources and, thus, readings produced by a
phototransistor actually represent the intensity of light emitted by the
desired source and by all background sources. In.order to correct for
the presence of background light, students should two readings of light
intensity at each distance: one of the background light, and one of the
background light and the light emitted by the LED. By subtracting the
first measure from the second, a measure of the intensity of the LED
for each distance is obtained.

This data can be entered onto a spreadsheet or graphing calculator and,
nsing the analysis features of these devices, students can determine
the relationship that best describes the data. Assuming that the
data are accurate, students should discover that intensity is inversely
proportional to the square of the distance. In terms of the original
problem, if star Y is one-fourth as bright as the similar star, star X,
then star Y is approximately twice as far from earth as star X.

5. CONCLUSIONS

Although laboratory interfaces are widely used by science educators,
the recent emphases on mathematical modelling and integrated
mathematics and science have increased their use in the mathematics
~classroom.  Laboratory interfaces represent a low-cost means of
collecting research-grade data. They allow students to develop an
understanding of mathematics through hands-on experimentation and
greatly expand the range of problems that students can investigate.

In the process, the use of interfaces enables mathematms students to"
function as real scientists and modelers.
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The Importance of Student
Autonomy
in Developing Mathematlcal

Modelling Ability

Thomas Naylor
' Edge Hill College of Hzgher Education, Lancashzfre, UK

SUMMARY

Developing mathematical modelling ability through student-defined
problems makes demands of student and tutor which are quite different
from those experienced during delivery of traditional mathematics
curricula. Defining an area of interest and the problems inherent,
along with structuring a written report of their investigation are major
difficulties for students faced with this situation for the first time.
Through examination of case studies, consideration is given to how
these difficulties may be overcome. The preparatory newspaper activity
used to prepare students to cope with self-defined and open-ended -
modelling situations is described in detajl and outcomes considered
in terms of student interest, motivation and confidence, along with a
statistical analysis.

1. INTRODUCTION

The philosophy which underpins all mathematics courses at Edge
Hill is that of mathematical modelling and applications, with the
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overriding aim being that on completing their course, students will
" have competence and, above all, confidence in these areas. While
competence can be planned for and acquired through all aspects of
the learning and teaching process, providing appropriate conditions
for the development of confidence requires considerable subtlety and
sophistication of approach. A student may be adept at concealing
insecurity during lectures, seminars, workshops etc. under the guise of
shyness, agreeing with the statements of others, or lack of assertiveness.
However, it is when given a specific task within a group project or when
undertaking a personal piece of coursework which moves into uncharted
areas that a student’s lack of confidence is most clearly exposed if there
has been insufficient or inappropriate preparation to deal with such
situations.  Clearly, the content of coursework assignments requires
extremely careful thought, particularly in respect of progression over
the duration of a course.

2. TOWARDS STUDENT AUT ONOMY

The first assignment Edge Hill mathematics students can expect to
encounter will be highly structured with considerable guidance, not too
subtlely implied, as to how to progress towards a solution. The three
remaining assignments presented in year one require students to make
enquiries, to draw conclusions based on the results of their enquiries
and discuss these in the light of the initial situation presented. By the
end of their first year students will have encountered four assignments
markedly differing in context and the type of mathematics applied.
In Year 2, coursework becomes much more open ended with students
being required not only to draw conclusions from particular data but
t6 seek out themselves the data required for such deductions. Typical
of the assignments are the determination of a mathematical model for
the population changes in a town or city of the student’s choice, and
the identification of a new motorway or village by-pass.

However carefully we feel we have prepared students for being placed
in this “semi-open” situation we invariably experience the response of
“please tell me what fo do!” from a number of students, and not
only those we would consider to be weaker mathematically. Success
in overcoming these lingering feelings of lack of self confidence is vital
if we are to fulfil our overriding aim, for the final year coursework of
all students requires them to undertake a “student-defined” modelling
project.
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The importance of student autonomy in the development of
mathematical modelling ability could not be rated more highly, yet the
requirement for autonomy generates considerable difficulty for both
student and tutor. Although encouraged to consider an area which
is meaningful to them, students experience great difficulty generating
a willingness to consider something because it is of personal interest.
They are aware that it is a mathematics project they are required
to undertake and wish to know the mathematics to be used, and the
answer, before they start. The difficulties tutors face in encouraging
students to consider a problem of interest, and how. mathematics
can help, tend to be three-fold. Firstly, definition of an area for
investigation because it is of interest to the student and not because of
the mathematics within that area. If a student is able to define an area
of interest by explaining it to the tutor, then the problems confained
within that area suddenly come to the fore. Even when a student is
aware of the problems contained within an area which is of personal
interest, difficulty may arise through an inability to identify them
clearly. The final difficulty occurs as a result of students comparing
this project with those in other subjects where z thousand words are
required. Coming to terms with an indefinite response to their question
over length is a major achievement for some students. ‘

An introduction to a student-defined problem is undertaken through an
activity which, it is anticipated, will help students feel more confident
in relation to the perceived difficulties while ensuring that they are
not placed in a straitjacket. From portions of a quality newspaper
identified by tutors, students must provide a written explanation of
why they found a particular self-chosen article the most interesting.
They are also required to suggest how mathematics can help provide
a deeper understanding of the situation. Small group discussion of
these responses highlights the need for clarity of thinking and faithful
transposition of thoughts onto paper. As a consequence, students feel
much more secure in the precise definition of an area of interest, the
inherent problems, and how mathematics can assist the solution of
those problems. Examples from both current and completed projects
will serve as illustrations. '

Qutcomes—Case Studies

One student was immediately attracted to the headline “Steamy novel
by GP aged 78 sets literary pulses racing” in The Daily Telegraph of
2nd June 1993 because “it makes a change for national newspapers to
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carry light stories that are not depressing.” The GP had previously
had several short stories published but the article highlighted the fact
that in this case she was to receive a “.£6,000 advance for two novels
with an option on a third.” This led the student to ponder how much

- the GP would receive in royalties, and posing the specific question “Do

all published books make a profit?” she felt would be of considerable
interest. Group discussion of the subsequent development of these areas
is based in mathematical economics and initially suggested the study
of normal and abnormal profits. While at first interest was focussed
on profit and the GP, further discussion led the group to consider the
profits made by the GP’s publishing company in particular and the
whole publishing industry in general. '

The next written response which the student shared with the group was
that the GP’s late brother was Pat Reid, who wrote the best-selling
“The Colditz Story”. This she had found extremely thought provoking
as she wondered whether there might by any similarities in their style
of writing. Text analysis, length of sentences and paragraphs were just
some of the areas she felt might be worthy of investigation. A lively
group discussion followed which included various ideas of sampling,
measures of average and dispersion, confidence limits, and a number of
other statistical techniques.

During consideration of this article it became clear that the student
was actively considering buying the novel referred to in the headline,
something that she would not have considered prior to reading the
article. An animated discussion followed which analysed a number of
situations when the intention of an individual or group suddenly or
gradually changed. Factors were considered which brought about these
changes and this line of enquiry may subsequently lead to consideration
of change of mind involving Catastrophe Theory.

The following day this student, as she did every week, bought the
Ormskirk weekly newspaper and was immediately confronted with a
two page spread announcing a proposed by-pass to overcome traffic
congestion in the town centre. Having already studied cubic splines in
the previous year of her course she resolved to find a cubic spline to
define the road and then plot this on the map given in the newspaper
or one obtained from the local authority. By setting up a coordinate
grid and measuring the differences between the proposed route and the
cubic spline calculated, she intends to investigate the degree of variance
between the two. It is also her intention to measure the curvature
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at various points along the proposed route in order to identify any
curves where speed restrictions need to apply or, alternatively, where
roundabouts would be more appropriate.

The newspaper article contains many conflicting comments from local
residents, traders, and the local authority on the proposed route and
the student saw how this related to the previous day’s discussion and
the influence the Daily Telegraph article had on her decision to buy
the novel. She has, therefore, set out to examine the reactions of the
various interest groups to the proposed route in terms of Catastrophe
~ Theory.

Over the four years that we have been using this introduction to
student-defined modelling situations this case is probably the one
which has demonstrated the most immediate results. The cause and
effect happened day-on-day and the newspaper exercise may have
subconsciously led the student to think of areas or situations which
might form the focus of her project when reading the local weekly
newspaper the following day. Ally this to the fact that her project was
well advanced in terms of investigative work less than one month affer
the exercise and one can see that her project was clearly motivated by
this activity and arose quite naturally out of personal interest.

Another student who read the same newspaper was atfracted to the
headline “A false solution to the Doctors’ new dilemma” which centred
on the fact that some doctors would treat/operate on non-smokers
and non-drinkers before those who indulged in these proven health
threatening activities. Based on the fact that hospitals do not have a
bottomless pit of money to finance treatment this student was moved
to ask “what criteria should doctors adopt in establishing a priority list
for treatment?” Suggestions from the group included (i) smokers and
drinkers; (ii) age, and (iil) cost of the treatment/operation with the
discussion progressing to the possibility of devising some form of rating
scale. This would be based on how long (a) smokers (b) alcoholics live
as within the group there was an awareness that tables exist which
predict the life expectancy of people over a certain age.

At this point the discussion suddenly veered off at a tangent as the
financing of hospitals became the focal point. The money a hospital
has at its disposal was identified as the key issue and suggestions for
raising income were considered. In the present economic climate the
selling of services i.e. expertise in particular areas of treatment, specific
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operations, etc. was felt to be paramount. Questlons such as “Does
the performing of many smaller operations generate more revenue than
one large operation?” were discussed at great length. However, the
central issue in all the discussion was the need to maximise income and
the students’ first suggestion for modelling the situation was through
a linear programming approach. The next suggestion was based in
mathematical economics through study of the sources for delivering a
particular treatment and the known demand, in order to identify the
optimum asking price for a given service. These could be graphed along
with average and marginal revenue as well as average and marginal costs
leading to the modelling of the curves by equations.

The discussion now took another interesting turn as the question was
raised “How good are these hospitals?” The compiling of League tables
as practised in the United States surfaced, quickly leading to various
criteria on which these should be based. Recovery rate, death rate,
number of beds, and variety of services were just some of the suggestions
offered.

The discussion of the articles raised by these two students was both
wide ranging, full of mathematical ideas, containing suggestions for
enquiry and considerable detail. It is interesting then to note the
contrast in the approach to the final year project. This second
student returned the following day with a topic totally unrelated to
any newspaper article yet she was extremely confident about what she
wanted to study — the success rate of top class women tennis players as
they progressed through Grand Prix tournaments. In order to do this
she intends to give each one a rating for the progress they have made
through the tournaments they enter. From this information, time series
graphs will be plotted from which phase-space diagrams, which have
their base in chaos theory, will be constructed and studied for evidence
of a strange attractor. It is then planned to attempt to find a fractal
dimension for this system, by the embodied method.

A student who experienced the same introductory activity two years
earlier had not studied mathematics beyond the GCSE level prior
to entering higher education, yet the day following the introductory
activity she announced that having worked the previous summer in an
Israeli kibbutz, she would very much like this area to form the focus
for her project. It was extremely pleasing to see the confidence with
which she embarked on a study of an area of deep personal interest
without initially knowing the problems which she might be considering.
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Through discussion it became clear that the siting, economy and
personnel of a kibbutz were important factors in establishing the success
of such a way of life. Consequently she defined the following problems
for investigation:

(i) Is there a relationship between the age of the kibbutz and the
number of its members?

(ii) Does the size (in terms of population) and distance of the nearest
town influence the size of the kibbutz?

(iii) What is the maximum number of kibbutzim that Israel can
support?

(iv) Does the interaction between age groups in the kibbutz
population mirror that in the state of Israel as a whole?

The first problem was considered statistically and comfirmed the
student’s own perception that a strong link existed between the age
of a kibbutz and the number of its members. Discussion of the kibbutz
philosophy leads the student to suggest that there should, perhaps, be
& strong positive correlation between the two. However, a number of
- constraints are identified such as the then current world glut of fruit
leading kibbutzim to seek alternative means of income through tourism
and light industry. ’

For the second investigation the country of Israel was divided into equal
sized areas and a model developed to predict the number of areas which
had a town and kibbutz, a town but no kibbutz, a kibbutz but no
town and no town or kibbutz. The observed data provided evidence
of validation and Reilly’s law provided the basis of a K [=population
size/(distance to nearest town)?] factor for each kibbutz and a KT
factor for each town by finding the sum of the K factors for those
kibbutzim for which a particular town proved to be the nearest. An
examination of the relationship between town population and KT
factors suggested- a general trend for the KT factor to increase as
the size of the town increased. Caution was suggested in drawing
conclusions from these figures as the student’s personal experience
allows greater interpretation and also validation.

In considering the third question, the student made two crucial
assumptions: (i) that there will be no change in geographical
boundaries (ji) increase/decrease of population is proportional to
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population size. A population model is developed which gives
surprisingly good predictions with an ultimate kibbutzim size of 290.
A time-series graph of the growth of kibbutzim shows little uniformity,
being related to international pressures on Jews.

The treatment of the final section again demonstrates the student’
s considerable perception and ability to apply known mathematics
alongside implementation of the modelling process.” Her first step is
to classify the kibbutzim and Israeli populations into four categories
and then establish the flows of people info and out of these categories.
Considerable research interviews with representatives of various Israeli
information centres and her personal experience produced percentage
figures of these flows to one place of decimals. Cascading models were
then employed to the current population of each category in order to
provide the steady state population predictions. Probably of greatest
concern to the Israeli authorities is the downturn in the population of
the 0-20 age group, and the student offers perceptive explanations here
_as well as for the other groups.

3. ANALYSIS OF OUTCOMES FROM THE
PREPARATORY ACTIVITY

While these three examples highlight some potential value of the
newspaper activity, one must consider a much larger sample before
drawing even tenuous conclusions. Consequently, study of all the
students who have experienced the activity was undertaken. The first
stage was to devise categories for a student s response to the a.ctl\nty
and these are shown in Fig.1. -

Category  Response

1 Demonstrates high confidence in approaching the
final year project but the newspaper activity has
no direct influence on the subject.

2 The subject of the final year project is directly
related to the newspaper activity and is
approached confidently.

3 Indecisive and may have several changes of mind.
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Category Response

4 Wants to be told what mathematics to
use in the project.
5 Dislikes the activity.

-Fig. 1 Student Response to the Newspaper Activity

The grades achieved by

the students in the various categories were then
-tabulated (Fig. 2).

(Except for Scores, all figures are percentages)

[ GRADE I () [1G) I[P |F Fotal MEAN
(score) (5)1(4) [(3) 12) (1) [(0) SCORE
CATEGORY

1 615 | 6 |1 28 | 3.3
2 115 | 4 20 | 3.85
3 13 |13 (1 27 | 3.44
4 17112 |4 |4 21 | 2.48
5 13/ 4 |02 |

Fig. 2 Analysis of Student Grades for the
Final Year Projects by Response Category

Finally the numbers in each

category over the last three years were
tabulated (Fig. 3) in order to

investigate recent trends,

Category ’ 1 2 | 3 4 5 |
Year '
- 1990-91 18 18 64

1991-92 29 14 38 -] 19

1992-93 . 26 23 18 26 7

Flg 3 Recent Trends
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Although this activity was first used with the 1989-90 final year
students, by 1990-91 the majority of students still fell into Category
4. However, the next two years see a marked increase in numbers in
Categories 1 and 2 suggesting that the newspaper activity might be
encouraging students not only to be more confident but also to look for
things which are of interest to them. The percentages in Categories 1
and 2 rises from 18, through 43 to 49. Category 3 also rises by more
“than double, as many Category 4 students, who actively searched for
what mathematics they could use, became more open, yet indecisive,
in respect of areas of interest to them. Between 1991-92 and 1992-
93 the large numbers in this category have moved to either Category
2 or 4, maintaining a general trend for the positive influence of the
newspaper activity. While Categories 3 and 4 reduced from 57% to
44% over these two years, a worrying Category 5 group emerged for
the first time. However, as there is no indication of students falling .
into Category 5 this year it is hoped that the ones observed last year
was not the start of a frend but rather a chance event.

4. CONCLUSION

The evidence from these statistics and the case studies described,
suggests that the newspaper activity has a most positive influence in
encouraging students to confidently undertake the study of an area
which is of personal interest or concern. -While such an approach is
still in its infancy, monitoring over the subsequent years will allow
refinement of the present approach and the introduction of more
appropriate initial activities will, it is hoped, develop the twin areas
of student confidence and autonomy when undertaking modelling
activities.
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Teaching Mathematics to Biologists

—Some General Aspects and
Modelling Examples

*

Adolf Riede
University of Heidelberg, Germany

SUMMARY

This is a report on some ideas and experiences of my teaching
mathematics to diploma students of biology at the University of
Heidelberg. The examples deal with & basic model of enzyme kinetics,
the Michaelis-Menten model for the food intake, and an application of
the Michaelis-Menten Law to find a predator-prey system modelling
the saturation of the predator. The emphasis is on how these models
can be handled by elementary concepts of caleulus and explained to
students in the life sciences. :

1.  THE STARTING SITUATION

Actually the application of mathematical methods in biology is
developing very quickly. Therefore, since the winter semester 1985/86
the diploma students of biology at the University of Heidelberg have to
take either mathematics or alternatively physics as s, subsidiary subject.
The mathematics course takes place during their first three semesters,
four hours a week lectures and two hours exércises in small groups.
The students of bioclogy also have to take a beginner's course on a
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computer language (Pascal, Fortran or C). Bach year there are about
* 120 beginners in the diploma study of biology and 60 to 90 decide to
take mathematics. -

Because of the complexity of biological processes, complex
mathematical theories are often necessary in mathematical modelling.
On the other hand, only a few students of biology have a good
understanding of mathematics from high school. From school time on
they usually have to first surpass a threshold before doing mathematics.
So the question is: Which way should a teacher take?

e Should one take the descriptive view without explaining
mathematical details?

e Should an understanding of mathematics also be taught?

o Is it wise to insist first on mathematical technics and main
theorems that seem to be indispensable for a basic mathematical
education?

My opinion from the very beginning was that one should teach an
understanding of what is mathematically going on, because only then
can a biologist apply the mathematics correctly, for example decide
correctly which statistical test has to be used. My purpose was not
“only to describe some mathematical examples from biology but to
teach the students to work on their own with the methods and technics
from calculus, linear algebra, probability and statistics. But I had the
idea that what I took for the indispensable part of mathematical basic
‘concepts should not be taught by insisting on them, but by showing
how' useful they are and which interesting results one can get, if one
has an understanding of mathematics and its applications.

2. TEACHING AND MODELLING

I soon learned that it is very important for successful teaching to explain
the mathematical notions as examples of biology. Very often it is
even possible to describe first a biological model and then abstract
the mathematical concepts. Here I learned that the level of abstraction
should be taken as low as possible. Then the biology students were
very well motivated and all ears during the lectures, had good learning
success and were encouraged to surpass the mentioned threshold. In
this sense modelling has turned out to be a very good means in the
mathematical education.
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The next important point I learned was to choose the right models
to explain mathematical notions. There are examples which explain
in a very clear way a mathematical notion from the mathematicians’
point of view. Such examples did only prove suitable if they did fit into
the biological reality. A biologist automatically thinks also about the
biological meaning and if he finds a biologically irrelevant assumption,
his interest in the mathematical notion decreases. In this way we can
not reach our goal. : :

In a large part my teaching was directed towards learning mathematical
methods to see general aspects, ideas and concepts. With the learned
mathematical concepts one could then go and try to explain other even
more interesting models or find new ones. I myself was wondering which
interesting models and applications could be handied by elementary
concepts, for example elementary curves like parabolas or hyperbolas:

The mathematical terminology must be translated into the terms that
are used in every day life or in the biological world. For example the
geometric illustration of the differential quotient by the increment of
the tangent is not enough. The biologist who sits in front of his culture
of bacteria sees at most a tangent to the bowl in which the bacteria
are cultivated. Nevertheless we may not forget the tangent but we
must take more time to explain the connection between differential
quotient, tangent and growth-rate of a population. This passage from a
mathematical notion to its geometrical illustration and to its meaning
in the biological world can easily be found in the diagrams that are
drawn of the mathematical modelling process. A consequent use of the
model conception of the relationship between mathematics and other
subjects, as it was presented for example at ICTMA-6, will certainly
help to improve teaching mathematics to nonmathematicians.

‘There is a great number of publications on the topic “Mathematics as a
Service Subject” (sée Blum (1988), Howson e.a. (1988)). Unfortunately
they are unknown to many teachers in Germany. My approach
corresponds, in- many ways, to the educational discussion ‘in the
literature and has put some of the statements into practice.

The following two models that have been analysed by complex
mathematical theories can be handled by elementary concepts from
calculus and linear algebra.
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3. THE MICHAELIS—MENTEN MODEL

The Michaelis-Menten model handles the intake of food by the digestive
organs. The nutrient substratum S gets transformed by an enzyme
reaction into a product P that can be taken in by the body. " The
investigation leads to the following initial value problem, where bo and
b; are positive constants: '

] ‘_
(1) &= —ut(utbo)v, o= E(u—(u—kbl)v), 4(0) = 1 and v(0) =0
= .60/ sp is the quotient of the enzyme concentration by the substrate
concentration at the beginning of the process, a small quantity in
practice.

A result of singular perturbation theory (Murray (1989), p.110 ff) says:
If  is small enough then each point (u(t), v(t)) of the arbit is arbitrarily
close to a hyperbola Hp, from a certain time #p on. Hp, is given by .

— _u
v = by

A computer simulation shows this fact for some solutions with different
initial conditions. The following computer drawings are done fore =1
and € = 1/3, by = 1 and by = 3. The hyperbola Hy, is the curve
marked with little lines and dots.

¥ k4
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03 o= 0.3
02f & JZT 02
0.8} £ o} ¢
' o5 1 15z ° 05 1 15 2
Fig. 1: Phase portrait for Fig. 2: Phase portrait for
e=1 e=1/3

Hy, is the isocline of horizontal orbit directions. It can be calculated
that there is another isocline-again a hyperbola- Hj with the following
‘properties:
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e H; is arbitrarily close to Hj,, if € is small enough. (See Fig. 2,
where e = 1/3)

e From some time fp on the orbit of our initial value problem
remains between Hp, and Hj and thus remains arbitrarily close
to Hy,, if € is small enough.

One might suppose that Hj, is the vertical isocline. This is no‘tr the case.
In Figs. 1 and 2 the vertical isocline is the uppermost dotted hyperbola
and Hj is the dashed hyperbola between the vertical and the horizontal
isocline.

This result is very well applicable in practice because the enzyme
concentration is small with respect to the substrate concentratidn. £ lies
between 10~7 and 1072, This means practically that after the process
has got going (from the mentioned time ¢y on) we have v = =
denote the concentrations of the product P and the substate S by lower
case letters p and s. The result expressed in terms of p and s is the

Michaelis-Menten Law:

The intake rate p of the product and the consumption rate —35 of the
substrate are equal and depend on the concentration s of food according
to the following formula: :

as

ST B’ a and B positive constants

p=—§=
a is the supremum of the rate of intake and B is called the Michaelis-
Menten Constant. An interpretation of B is the following: If the
concentration of the substrate has the value s = B then the rate of
intake is just half the supremum of the rate of intake.

4. A PREDATOR-PREY MODEL

A predator-prey system can be modelled by a system of differential
equations for the sizes z of the prey population und y of the predator
population in the following way:

(3) & =zG(z) - J(x)y, ¥=y(-D(y)+P(z))

For the specific growth rate G{z) of the prey in absence of predators we
use the well known logistic model G(z) = p(1 - %), p >0 and K > 0
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The specific death rate D(y) of the predators in absence of prey is
modelled by a constant D(y) = d. We regard the prey population
as the substrate in the sense of the Michaelis-Menten model. For the -
intake rate of one predator we use the Michaelis-Menten Law p = a:TB
and put the specific growth rate P(z) of the predator population with
respect to the intake of food equal to the intake rate, P(z) = ;3%
Observations in nature suggest that predators chase only as long as
they are hungry. Their saturation depends on the other hand on how
they can intake their food. To model saturation we put the chase rate
J(z) of one predator equal to the intake rate, J(z) = ;35. Thus we
end up with the following predator-prey model:

. ._i . azxy C azy
(4 "-B_px(l K) x+B ’ Y dy+m+B

The model exhibits mainly three possible behaviours:
e No coe@istence
e Coezistence in o stable steady state
o Coezistence in a stable oscillation.

The case of no coexistence is shown in Fig. 3. If the capacity K of

the prey is too little then the predators will die out while the prey

population approaches its capacity. This can be interpreted in such a

way that there is not food enough to guaranteed the predators’ survival.

“Too little” means in the mathematical model K < A := %. See Fig.

3, where K = 3 and A = 3.9. The other parameters in Fig. 3 to

5 are d = 3,0 = 4,B = 1.3, Fig. 4 demonstrates the possibility of
coexistence in a stable steady state for K = 8. Coexistence in a stable

oscillation is observed for K =10 in Fig. 5. The closed stable orbit

corresponding to the stable periodic solution is printed fat.

Many of these facts can be explained using only elementary facts from
linear algebra and calculus (see Riede (1993) and (1994)). The most
efficient tool is the concept of the direction field. One aspect of the
direction field is indicated in the figures, namely the horizontal isocline,
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the straight line, z = A, marked with little lines and dots. The vertical
isocline, a parabola marked with dots, is also plotted.

PREDATOR . PREDATOR

4 “ f .‘".' H 5
R B A B A T s 4
Figure 3: No coexistence Figure 4: Stable steady state

FPREDATOR

T .".
2 V2 4 6 § 5ot

Figure 5: Stable oscillation

After these wonderful mathematical results have been explained
biologists ask if an observed oscillation in nature is governed by such
a model. But this is not easy to decide. However experiments in
the laboratory affirm its relevance (see Waltman (1983)). One could
conclude the lectures on these models by showing Waltman'’s diagrams
of experimental data. '

5. REFELECTIONS ON TEACHING THE MODELS

The point of this explanation of the Michaelis-Menten Law is the

calculation that shows that nearby the hyperbola Hy, there are other
hyperbolas which are crossed by the orbits from above (see Riede 1994).
In my lectures I often carried out such technical details, if I found it

useful for the applications and if the technical apparagus did not surpass .

a certain amount. My experience was that if the caleulations are done
slowly step by step and clearly arranged, then a good learning success

is possible such that students learn to do such calculations on their _

own. They learn which possibilities are given for manipulating and
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transforming a formula and that one has to do this carefully to obtain
correct results. This is also very important if they are going to tell a
computer to do the calculations in a more complex situation.

Computer plots, like those above, proved a very good way to illustrate
mathematical notions and results. Similar to the differential quotient.
we must take some time to explain the speed vector of an orbit, its
geometric interpretation as an arrow tangent to the phase curve and
its connection to the growth or decrease rates of both species. The
students are also better motivated if a formula is explained by a nice
picture. But there is also a danger: It can occur that to the teacher
the figure shows a certain feature but this feature is not as obvious
to the students, especially if the biological meaning is not obvious.
The attention that a nice picture draws can be used as an excellent
opportunity to explain again the mathematics and the biology behind
the figure.

Concluding I like to say that I hope that these investigations on
relatively realistic examples will augment the teachable and learnable
possible contents of a mathematics course for biology students.
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Mathematical Modeling Tn Higher
Distance Education

-F’red Mulder _ :
Open University of the Netherlands

SUMMARY

The Open university of the Netherlands (OuNL) caters for the
educational needs of what can be most succinctly described as non-
traditional students. This paper’s first section sketches a general
picture of the OuNL. Section 2 then fills in some details on its
Natural Sciences programme. This programme features gz modelling
course called Mathematical modelling for life scientists, which is briefly
introduced in section 3. Some typical aspects of teaching mathematical
modelling in a QuNL setting are highlighted in the last two sections.
OuNL education, being distance education, calls for alertness to
students’ difficulties in formulating differential equations (section 4).

And its being higher education warrants a, rather in-depth treatment

of modelling (section 5).

1. THE OPEN iINIV_ERSITY OF THE NETHERLANDS

With the formation of the Open university of the Netherlands (OuNL)
in 1984, -the country saw the introduction of a new form of higher
education, at both university and higher vocational levels. OuNL
education is open to ‘anyone aged 18 or over; no other formal
qualifications are required. Instruction is mainly through printed

H
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materials, allowing study to take place at home, in students’ own time,
at their own pace. Tutoring facilities, from individual consultation
to group sessions in one of 18 study centers, are available optionally.
OuNL education is open higher distance education.

OuNL courses are self-contained units, generally requiring 100 hours of
study each. They can be combined in various ways, basically allowing
students to choose between four possibilities: a single course, a free
combination of courses, a short academic degree programme and a full
academic degree programme leading to the degree of ‘doctorandus’,
roughly the equivalent of a masters degree, which at traditional
Dutch universities is obtained upon completion of a 4-year full-time
programme.

Enrollment is currently over 50,000. The student population is an
extremely heterogeneous one in terms of age, previous education and
professional experience, to mention but a few categories. However, a
global distinction can be made between two subpopulations. About
40% of OuNL students have no formal qualifications for enrollment at
traditional institutions for higher education. The OuNL offers them a
second chance. In fact, doing just this was one of the major goals set
for the OulNL upon its foundation, fitting in with a more general equal
opportunities policy.

The remaining 60% of OuNL students appear to be well-educated
people who wish to broaden their existing knowledge and skills and
prefer the conditions of studying at the OuNL to those of traditional
higher education. The OuNL is said to offer them a second way.

2. STUDYING NATURAL SCIENCES AT THE OPEN
UNIVERSITY

The OuNL consists of seven faculties, representing the following fields
of study: law, economics, management and administration, technology,
social sciences, cultural sciences, and natural sciences.

The study of natural sciences at the OuNL attempts to integrate

four basic disciplines: biology, chemistry, geology and physics. Some
individual courses are discipline-oriented while others are oriented
towards integration. All degree programmes are multidisciplinary in
approach.

A second characteristic of the programme offered by the OuNL’s
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Department of Natural Sciences is its being geared towards linking
the understanding of natural phenomena to the analysis of problems
of policy and management. Some courses specifically aim at achieving
this kind of integration. Obviously, developing courses like these is
not feasible without contributions from social scientists. For that
reason, social scientists are on the Natural Sciences staff and among
the external specialists to whom the authoring of (parts of) courses is
commissioned.

‘The dually integrated framework outlined above is applied to two fields
of study. One is the environment. The second, distinct from but not
unrelated to the first, is the field of nutrition and toxicology.

3. MATHEMATICAL MODELING IN HIGHER
DISTANCE EDUCATION

The OuNL’s Natural Sciences programme features a modelling course
called Mathematical modelling for life scientists. Tts first part is
devoted to learning to speak the language of mathematics, rather
than rely on the mathematical bag of tricks. One is taught how to
formulate mathematical models of dynamic processes, and how to study
their behavior both analytically and numerically (through the use of
computers). The second part is devoted to a variety of applications
to the life sciences: chemical kinetics, physiological control, growth,
population dynamics and fishery. A textbook (Doucet and Sloep, 1992),
an accompanying workbook (Sloep et al., 1992) plus software (Stella 1T
from High Performance Systems, 1992) comprise the course materials.

Some typical aspects of teaching mathematical modelling in a higher
distance education setting are highlighted in this paper. OulNL
education being distance education calls for special didactic techniques
(section 4). And its being higher education warrants a rather in-depth
treatment of modelling (section 5).

4. DISTANCE EDUCATION: THE PROBLEM OF
FORMULATING DIFFERENTIAL EQUATIONS

It is natural for printed material, designed for use in distance education,
to contain didactic features usually not to be found in traditional
textbooks. Some of the more prominent ones are listed in Box 1. They
feature in most OuNL courses, including Mathematical modelling for
life scientists. ' '
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Box 1. Didactic features of printed material in distance
education

o A typical study unit opens with study instructions (or, less
severely, suggestions). These include a list of learning objectives
and an estimate of the number of study hours: fequired for the
unit. c

e Key terms and concepts are indicated in both the running text
and the left hand margin. : '

o The left-hand margin also features so-called ‘margin texts’,
serving as informal comments and hirts. They can be thought
of as the sort of things a live teacher could have said at that
point in his or her lecture. :

o In-text-questions are meant to make a student pause and in
some way or another process the information contained in the
preceding text. In-text-questions are immediately-followed by
an answer. :

o Self-assessment questions appear at the end of a study unit.
They enable students to check whether key concepts have been
mastered.

Besides these general ones, subject-specific didactic features may be
called for. In Mathematical modelling for life scientists the skill of

'formulating differential equations is a case in point.

Tven in non-distance education many students find it difficult to
formulate a model’s behavioral equations on the basis of information
presented mainly as text. Very often, they have to be carefully guided
by their teacher. It follows that in a distance education modelling
course, with students having no teacher around when they get stuck,
this step is a matter of serious concern. It was found that one way
to at least partly overcome the problem is to have students vigualize
the information they have to work from. This visualization is standard
procedure in the simulation software that comes with the course. It
will be illustrated by an example, which concerns the physiological
regulation of glucose in the blood by the hormone insulin. As an
introduction, Box 2 contains a slightly reworded quotation from Doucet
and Sloep (1992).
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Box 2. A model of blood glucose regulation by insulin

We shall inspect the regulation mechanism by means of a simple model
taken from McClamroch (1980). It contains two state variables: the
insulin level in the blood and the blood glucose level; and one or two
input variables: the feeding regime, and possibly (for diabetes patients)
an injection regime for intravenously administered insulin.

e Clucose enters the blood from the digestive tract by hydrolysis
of carbohydrates in a meal (an input variable).

e Glucose also enters the blood by the breakdown of liver glycogen
in response to low blood glucose levels. Breakdown rate depéends
on the blood glucose level and is assumed not to depend on the

- amount of glycogen present in the liver.

e Glucose leaves the blood by conversion to glycogen (actually,
passage into tissue cells followed by conversion), at a rate
depending on both insulin level and glucose level.

e Insulin is synthesized in certain areas of the pancreas, and is
released into the bloodstream at a rate which depends on the
blood glucose level. A second, optional, source of insulin is
injections (an input variable).

e Insulin does not remain in the bloodstream, being degraded by
an enzyme (insulinase), at a rate depending on blood insulin
level. '

Here, without entering into too much detail, the role of Stella modelling
and simulation software in the initial stage of the modelling process will
be discussed. Fig. 1 shows the so called Stella diagram built on the
basis of the five model assumptions formulated above. It is of interest
to note that building the diagram is a stepwise procedure, with each
one of the model assumptions corresponding to one of the flows in the
diagram. :

Now, starting from the diagram, formulating the model equations is
relatively straightforward:

o' = () - Fy(e,y) +u1/V 1)
y' = Gi(z) — Ga(y) (2)
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bloodinsulin y
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Flg 1. Stella diagram for blood glucose regulation
by irsulin.

According to students, the gap they feel at. first between text and
equations is effectively bridged via the visual intermediary foothold
provided by the diagram. The notoriously difficult step of formulating
‘a model’s behavioral equations turns out to be enormously facilitated
by first constructing the diagram. In fact, this is one of the reasons why
this particular species of software has turned out to be so very well-
suited for mastering the art of modelling through distance education.

Of course equations (1) and (2) are as yet unsuﬁiciently specified. But,
from a distance-educational point of view, the worst is over. Having got

this far, students confidently proceed by feeding additional information
into the equations (spec1ﬁc functional relationships, parameter values).
The software can then again be relied upon to guide them through the
process of actually running simulations and producing graphs like Fig.
2, showing the bloodglucose peak after a meal in a. diabetes patient
who receives no extra insulin.

5. HIGHER EDUCATION: MATHEMATICAL MODELS
AS CARRIERS OF SCIENTIFIC KNOWLEDGE

In higher education, whether or not it is of a distance nature, a natural
sciences course on modelling should not restrict itself to the fairly
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Fig. 2. Simulation output.
Diabetes, no extra insulin, one meal.

1: bloodglucose x. 2: bloodinsulin y. 3: glucose release u;/V
from food carbohydrate.

practical level of building models and numerically implementing them
through the use of a simulation package.

Students of Mathematical modelling for life scientists are treated to
a rather in-depth exposition on the nature of models, their role in
scientific research, and the justification for their use. A central part of
thig exposition concerns the so-called semantic view of theories. This
paper’s final section is devoted to this issue.

The Semantic View of Theories

The semantic view of theories revolves around three key notions:
natural system, theoretical model and theoretical hypothesis. A natural
system is a part of the empirical world. It has spatial and temporal
dimensions. In a particular case, what makes up a natural system is
determined by what one is interested in . Studying the natural system
gives rise to ideas of the way it might operate. A theoretical model is
the formalization of these ideas in mathematical language.

The relationship between natural system and theoretical model is a
subtle one. It is obvious that the theoretical model is inspired by
the natural system. But logically speaking there is no connection
whatsoever between the two. The theoretical mode! makes no claims
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about the behavior of the natural system. It does not make claims
about anything in the empirical world, for that matter. Still, making
claims about the natural system is what the modeler ultimately aspires
to. The point to be made here is that the theoretical model is not
the proper vehicle for such claims. Allowing such claimsto be made
is the task of the third ingredient of the semantic view of theories,
the theoretical hypothesis. It simply says: ‘the theoretical model is a
model of the natural system’. The theoretical hypothesis is a contingent
statement, its truth being contingent upon the empirical world of which
the natural system forms part. The theoretical hypothesis could furn
out to be false. Without it, a theoretical model cannot inform about
the empirical world. Put differently, without a theoretical hypothesis
the theoretical model cannot perform the task of being a carrier of
scientific knowledge.

Twin Lakes

The three notions introduced above will now be applied to an example
from Doucet and Sloep (1992). The example, called Twin Lakes, is
introduced in Box 3.

Box 3. Twin Lakes

Twin Lakes is a system consisting of a river passing through two
lakes. Let us assume that, by accident or negligence, a load of noxious
chemical enters the first of the two lakes. The accident calls for practical
measures, one of which is that no swimming is allowed in the lakes
as long as the concentration exceeds a certain value. The holiday
resorts along Twin Lakes will have to be notified that swimming will
be forbidden during somie period of time. The people concerned—hotel
owners, other business people, and their customers —would like to know
how long this period will last.

Natural System

Obvioﬁsly, the natural system is the pair of lakes called Twin Lakes,
shown in schematic top view in Fig. 3.

Theoretical Model

The problem can be solved by using & two-compartment model with
two coupled differential equations. This pair of equations is what the
theoretical model consists of. The model will be referred to as: the
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rFig. 3. Washout of a chemical from Twin Lakes.
F: flow. V4: volume of lake 1. V5: volume of lake 2.

two— lake cascade system. In the language of the semantic view of
theories, this theoretical model can be defined as follows. '

A theoretical model is a two-lake cascade system if and only if:

Qo

i) =500, Cu(0) = 2

Ch() = —-%Ol(t) - %Cg(ﬁ), C2(0) = 0

Theoretical Hypothesis

The theoretical hypothesis says: the two-lake cascade system is a
model of Twin Lakes. Or, equivalently: Twin Lokes is a two-lake
cascade system. The theoretical hypothesis provides a link between
theoretical model and natural system. This link has the status of
a claim. The theoretical hypothesis claims that the natural system
called Twin Lakes has the property of being a two-lake cascade system.
What this property amounts to is stipulated by the definition of the
theoretical model.

The theoretical hypothesis can also be phrased in a more elaborate
form. It then consists of a conjunction of contingent statements as
listed in Box 4. -~
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Box 4. Twin Lakes theoretical hypothesis

1 C4 represents the concentration of the chemical in lake 1.
9 (' represents the concentration of the chemical in lake 2.
3 F represents the flow rate of the water.

4 V; represents the volume of the lake 1.

5 Vs represents the volume of the lake 2.

6 The values of V1 and Vs are constant.

7 The value of F is constant.

8 The amount of chemical dumped is negligible with respect to
the amount of water; strictly speaking, it should be 0 (otherwise
the volume of lake 1 changes).

9 Mixing between chemical and water is immediate and complete
(otherwise we need a more than two compartment model).

10 All chemical in the lakes is dissolved in the water (no binding to
the sediment).

An important distinction must be made between statements 1-5 and
statements 6-10. Statements 1-5 are identifications. The use of
the verb ‘represent’ is typical of identifications.- Statements 6-10 are
assumptions. This version of the theoretical hypothesis is equivalent
+o the more succinct version: the various items in the list jointly make
up the theoretical hypothesis. They are all, both identifications and
assumptions, contingent statements, and may be false.

Tt is not common among modelers to speak of theoretical model and
theoretical hypothesis. However, explicitly adhering to the distinction
between the two has the advantage of enhanced conceptual clarity. This
applies in the stage of formulating identifications and assumptions,
when the distinction makes one aware that these form part of the
theoretical hypothesis, not of the theoretical model. In the sequel,
it will be shown to apply to testing. Testing a theoretical hypothesis,
that is.
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Testing the Twin Lakes Theo_retical Hypothesis

In order to be able to carry out a test of the theoretical hypothesis
some preliminary work has to be done. First, the system of coupled
differential equations that, together with a specification of the state
variables, comprises the theoretical model,- has to be soived. The
solutions are:

*

Co(t) = VI?O% (em%t - e_%t)

Second, some numerical values have to be specified. Since Twin Lakes
is not an authentic example, these are of an arbltrary nature and are
given without discussion: Vi = 1,000,000m?, Vo = 600,000m3, F =
50,000m° per day, and the amount of chenncal dumped into lake 1is
500 kg. Inserting these values into the solutions yields

Cy (t) = 0.0005~0-05
Ca(t) = 0.00125(e™05% — =003t

Now, on the basis of the theoretical model a prediction can be made.
Since a prediction is about some point in time, as a final specification
a value of £ must be chosen. The prediction will be about ¢ = 30 days,
and will focus on the second state variable, Cs(%). From the equation it
is found that C2(30) = 1.75. This implies that at ¢ = 30, the chemical
in lake 2 will have a concentration of 1.75 pg/L. Two things may occur.
Either the concentration at day 30 is not equal to 1.75 ug/L, or it is.
In other words, either the prediction does not bear out, or it does.
(Of course, in reality things will not be that clearcut. For instance, at
t = 30, the concentration could turn out to be 1.74 ug/L. However
the sub ject of statistical variation will not be dealt with here. )

The logical argument involved in testing a theoretical hypothesis takes
on a different form depending on whether or not the prediction bears
out. In case it does not, the argument looks like this, with the
theoretical hypothesis denoted as Th, the prediction as P:

e premiss 1 if Th then P
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» premiss 2 not-P
s conclusion not-T'h

In the language of logic, the argument is a modus tollens. A modus
tollens is a valid deductive argument. Here, it results in falsification of
the theoretical hypothesis. }

In fact, a next step ought to be added to the argument. It was
stressed that the theoretical hypothesis is a conjunction of contingent
statements. In the case of Twin Lakes, the number of contingent
statements is ten. Taking this into account, the theoretical hypothesis
can be written as (with ‘1’ for ‘statement 1, etc.):

Th = (1 and 2 and 3 and 4 and 5 and 6 and 7 and 8 and 9 and 10)

And its negation:

not-Th = not-(1 and 2 and 3 and 4 and 5 and 6 and 7 and 8 and 9 and
10) |

Through an argument called negation of a conjunction it can now be

concluded that

(not-1 or not-2 or not-3 or not-4 or not-5 or noi-6 or not-7 or not-8 or
not-9 or not-10) '

To sum up, here is the complete argument:

e premiss 1 "if (1 and 2 and...and 9 and 10) then P

e premiss 2 not-P : '

e conclusion 1 not-(1 and 2 and ...and 9 and 10)

e conclusion 2 (not-1 or not-2 or 4 ... or not-9 or not-10)

This conclusion is to be interpreted as an invitation to go and look for
which statement is false. Or, better: which statements are false (‘or’,
as it is used in conclusion 2, is of the inclusive type).

Although in principle one or more of the identifications could be false,
often the assumptions are to blame. The different ways in which
assumptions may be mistaken will not be dealt with here. However,
a related issue should be stressed: the list (statements 6-10) is by no
means complete. To make matters worse, there is no truly satisfactory
way of making it complete. And yet one needs the list to be complete
for only then the theoretical hypothesis guarantees that the theoretical
model is a model of the natural system under study.
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One could expand the list to include such assumptions as:

11 The chemical does not break down.
12 Any chemical leaving lake 1 immediately enters lake 2 (implying
that the stretch of river between the lakes has zero length).

But adding these does not result in a list that can be considered
complete. Factors not included simply because they are unknown to the
modeler may affect the theoretical hypothesis truth. The only way out
is adding the assumption: no other disturbing factors are operative.
The list is complete. But a new problem arises:- there 1s no way of
guaranteeing the fruth of t]:us blanket assumption.

In case the prediction does bear out, the logical argument can no longer
be deductive but has to be inductive, and is slightly more involved as
well. It will not be presented in this paper; the reader is referred to
~ Doucet and Sloep (1992), where it is discussed in some detail. Here,
instead of the proper argument, a potential trap will be dealt with, a
trap frequently fallen in to by modelers (see Oreskes et al., 1994). The
argument then runs like this:

e premiss 1  if Th then P
e premiss 2 P
e conclusion Th

In the language of logic, this argument is called affirming the
consequent. Affirming the consequent is an invalid argument, a logical
fallacy. Its use results in a ‘verification® which is totally unfounded.
The logical crux of the matter is that, given premiss 1, premiss 2 being
true is very well possible without Th being true. Or, in modeling
terms: if the prediction bears out, some other mechanism than the one
incorporated into the theoretical hypothesis may be behind it. And,
finally, in terms of Twin Lakes: if, after 30 days, the concentration in
the second lake is equal to 1.756 ug/L, this does not prove that Twin
Lakes is a two-lake cascade system. What a prediction bearing out does -
provide is a more modest confirmation of the theoretical hypothesis.
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An Attempt to Integrate
Traditional Applied
Mathematics and Modern
Mathematical Modelling
Activities

Bryan A. Orman
University of Southampton, UK

« Men must be taught as if you taught them not,
And things unknown proposed as things forgot. ?

Alexander Pope
" Bssay on Criticism

SUMMARY

Since the pedantry of traditional appled mathematics prevalent’
this century, with its insistence on involved algebraic manipulations
.and sophisticated calculus, has done little to enhance the ordinary
. student’s understanding of real world problems, the possibility of the
construction of some form of integrated course was investigated.

This article is a report of an attempt to develop such a non-specialist
modelling course based firmly on traditional applied mathematics to
which has been added the essential ingredient of experimentation.
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The content and organization of the course is described, with an
emphasis placed on the novel methodology developed and some of the
specific activities undertaken by the students, and the issues relating
to the assessment of the students’ work.

1. INTRODUCTION -

The present position of the teaching of traditional applied mathematics
in the English educational system can be said to have its origins in
the early years of thé nineteenth century. The establishment of the
Analytical Society in Cambridge, which was followed closely in 1819 by
the permanent association to be known as the Cambridge Philosophical
Society, resulted in widespread changes in the examination system at
Cambridge (Ball, 1889). - : -

The character of the instruction in mathematics at the university was
largely dependent on the textbooks then in use and the rule that an
examination question should not be set on a new subject in the tripos
examination unless it had been discussed in some treatise suitable
and available for Cambridge students was invariably accepted. The
textbook writers would include the more recent examination questions
suitably modified in their textbooks and thus the demand for new
questions led to more and more difficult questions. To promote their
cause, the Analytical Society issued in 1820 two volumes of examples
illustrative of the new method. Furthermore Whewell’s Mechanies
(1819) and Dynamics (1823) appeared at that time (Earnshaw, 1845).
By 1830 the analytical methods had almost completely superseded the
fluxional and geometrical methods in the rest of the ¢ountry.

By the beginning of the twentieth century we find widespread
dissatisfaction with the whole position of the teaching and assessment of
applied mathematics. At the International Congress of Mathematicians
meeting in Rome in 1908 a proposal of Dr David Eugene Smith,
Professor of Mathematics at Columbia University, New York resulted
in the appointment of an International Commission on the Teaching of ’
Mathematics. The immediate cause which led to the formation of the
International Comrmission was the divergence between mathematical
and pedagogic requirements in the schools and universities. Its
brief was to secure a series of reports on the state and progress of
mathematical instruction in various countries of the world.
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In these reports (Board of Education, 1912) we find such ‘typical
sentiments as

“They are written solely with a view to examinations. The authors
aim at brevity in book work and the omission of everything that is not
likely to be asked for in an ezamination. They deliberately avoid any
suggestion of anything beyond the syllabus of certain ezaminations. The
ezamples they work out in the text are selected for their difficulty, not
to tllustrate any principle.”

and

Another serious defect, which has been generally atiributed to the
system of the Mathematical Tripos, is the almost complete divorce
between mathematics and experimental physics.

Although the mathematician has given about half his time to “Applied
Mathematics” he need have, and frequently has had, no knowledge of
ezperimental physics. Normally, he goes to no experimental lectures, he
does no work in g laboratory, and the experimental facts which ke learns
in his mathematical textbooks are usually of the simplest character,
reduced to an abstract and aimost conventional form, suitable for the
direct application of mathematical analysis.”

2. THE MODELLING DIAGRAM

Every serious teacher engaged in mathematical modelling has, from

time to time, either used the now' classic seven box diagram (Penrose,

1978) or constructed a diagram for the methodology appropriate to

the level of instruction and the class of problems under consideration.

The approach adopted in the course described here demanded its own

diagram to illustrate the loose connection between traditional applied

mathematics and the essential experimentation, (Fig. 1). Several
interdependent loops can be identified:

(A) the real world-problem-solution loop
- This is the basic loop and it is this loop, in which & real world
problem is identified and a solution requested, that determines
the complete modelling activity.
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(B) the real world-ezperiments-ideal world loop
This is the conventional basic physics loop. Here an ideal world
is generated from the real world through a strategy involving

nhecessary simplifying assumptions together with quite elemen-.

tary empirical modelling—the experiments to determine ‘the
applicable laws of physics and to fix the associated parameters
relevant to the related ideal world.

(C) the ideal world-mathematical model-prediction-real worid loop
This is the acknowledged standard mathematical modelling loop
in which only the “compare with reality” box has been modified
and given a dual role.

(D) the prediction-ezperiments-reql world loop
This is another basic physics loop. It has been granted an
enhanced significance in this scheme since without it the entire
modelling activity would be rendered vacuous.

To complete the modelling diagram the traditional applied
mathematies procedure has been added. Tts starting point is the
ideal world box incorporating the pertinent laws of physics and the
parameters obtained from the associated process of model construction.

The conventional iconic and symbolic regime specifically related to

applied mathematics enables the model to be developed and a well-
defined answer to be given to a correctly posed question. This is the
traditional examination style question bearing little or no resemblance
to any real world problem. It is allocated its true place in this scheme-

3. THE IN TEGRATED COURSE

" As part of their fwo year B.Ed. programme at the University of
Southampton, students teok g, course in mathematical modelling, The

level of preparedness, this cohort was considered ideally suitable for an
innovative approach to the teaching of elementary applied mathematics

within a mathematical modelling course. !

r e

-
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‘The twelve week course was timetabled for one single session (S1) and
one double session (S2) each week. The students’ modelling activities
associated with this novel approach to applied mathematics teaching
allowed one topic to be introduced each week for eight weeks. The
students worked in groups of about four and, although not compelled,
they were encouraged to rotate membership from one topic to the
next. The remaining time was devoted to general discussions about
the various methodologies encountered in other modelling courses and
to the non-timetabled contact with students on a one-to-one basis in
relation to their individual project work—the other component of the
course. This individual project work gave students the opportunity
to pursue a topic of their own choosing and this freedom invariably
resulted in further work in elementary applied mathematics. The
manner in which each topic was introduced to the students varied
according to the specific objectives associated with the topic. The
overriding principle concerned the collection of appropriate data—
data for model construction and data for model validation. The
mathematical expertise required of the students was kept to a minimum
and, more often than not, the answer to any mathematical question was
given to the students

The assessment of the group modelling work was based almost
entirely on the reports submitted by individual students. Students
were expected to choose two out of the six topics designated for
assessment purposes. Each account had a common element covering
the group work in the two sessions devoted to the topic and for
discriminatory purposes the individuality of the report was achieved
through the expectation of further realistic investigations by the
student in a directly related area. Thus the application of the model
to novel situations was encouraged with further mathematical models
developed and/or new experimentation undertaken. The necessary
literature search by the students to generate the report’s distinctiveness
enriched the activity and was considered by the students to be an
extremely worthwhile feature of the course.

4. SOME STUDENT MODELLING ACTIVITIES

A selection of the topics employed during the short life of this innovative
course will be given here, although the commentaries will lack the
necessary detail for a reasonable appreciation of the implementation of
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the modeliing scenario. The first two are presented as almost complete
accounts with the others just listed for information.

Shortening of a Rope When Knotted
(Mathematical Monthly, 1989 )

This is a well tested modelling exercise and is generally accepted as a
suitable exercise in a variety of modelling scenarios (Open University).
As far as this methodology is concerned it is ideal as the first activity
at all levels since it exposes students to the fundamenta] aspects of the
modelling processes. : .

S1 The facilitator had a variety of ropes of about two metres in
length whose diameters ranged from 8mm to 24mm. A simple
overhand knot was demonstrated and the problem posed “By
how much is the rope shortened when the simple overhand

- knot is tied in it?” Each group of students was given a
complete set of ropes and the necessary techniques for the
required measurements were discussed. The accuracy of the
actual measurements of both the shortenings and the diameters
presented the groups with serious problems. The initial attempt
to aggregate the groups’ results exposed the poor experimental
techniques employed since the tension applied to the ropes in the
construction of the knots usually varied from rope to rope and
from group to group. It was not unusual for the whole session to
be repeated! Aggregation indicated to the groups that they were
replicating and this instiiled confidence, The linearity of the plot
of the shortening against diameter was finally demonstrated.

S2 Various simple geometrical representations of the knot were
developed by the groups to explain the empirical result of the
brevious session. Most EIOups got very close to a solution
by systematic revisions of their model.  Well satisfied, the
groups thén turned to the second problem “By how much is
a rope shortened when a simple figure-of-eight knot is tied
in i7" On this occasion the experiment was not performed
first since this time the groups were expected -to create a
mathematical model in order to predict the shortening that will
occur. The necessary refinements of the elementary geometrical
representations were performed quite easily by the groups since
they had already experienced a similar activity in this session.
When the groups were reasonably satisfied with their model,
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that is, their prediction, they were allowed to perform the
validation experiment. It was unusual for the students to be
disappointed with their experiences.

The Pendulum—Simple and Otherwise

The oscillation of a simple pendulum is probably the most popular of
all the possible demonstrations in an elementary applied mathematics
course. It is used in this course not as a device for determining the
value g but as a device for stimulating the students’ interest in periodic
motion.

S1 This session concentrated on the establishment of the empirical
result that, for small oscillations, the period is independent of
the mass of the pendulum bob but proportional to the square
root of the pendulum’s length. To this end the groups used the
same selection of bobs and strings although different selections
would have made the analysis more convincing. Aggregation of
the groups’ results was always spectacular. The mathematical
model associated with the empirical result was then given to the
students—the application of Newton’s second law to obtain the
equation governing simnple harmonic motion. '

S2 Before this session students were expected to search the
literature for the large angle theory of the simple pendulum.
‘Thus armed with a variety of textbook results it was possible
for the standard mathematical model required in this session
to be reviewed for them. The prediction having been agreed,

the validation experiment was performed. ~ Good results
. were obtained if the effect of air resistance was conveniently
acknowledged.

Some of the other topics
(i) Torricelli’s law (Orman, to appear)
(if) Hooke’s law, ﬁormal modes
(iif) Newton’s experimental law of restitution
(iv) Archimedes’ principle, buoyancy and stability
(v) Chains and Strings
(vi) Moment of inertia, flywheels
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5. CONCLUSIONS

Since the students did not progress to further applied mathematics
courses it was difficult to judge their level of. understanding of the
basic principles. However the quality of the further work undertaken
by the students as part of their individual submissions indicated an
appreciation of the subject matter not often encountered in the work
of students following a conventional course.

The students were enthusiastic and highly motivated during the course
and many stated that, although they were quite apprehensive about, the
subject before the course, this partial insight had given them confidence
to read and comprehend applied mathematics textbooks. They all
agreed that the course had given them an awareness of some parts
of applied mathematics that would help them become better teachers
of mathematics. Indeed, as Alexander Pope put it, '

“Let such teach others, who themselves excel
And censure freely who have written well
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