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Preface 

Over the past two decades, there has been a growing awareness that 
mathematics should not be taught in isolation from its applications, and 
consequently, many teachers and lecturers today incorporate applications 
and mathematical modelling into their existing courses. 

In Section A. several authors review the present methodology in the 
process of problem solving and propose new ideas in the formulation stage 
of mathematical modelling. 

Teachers of mathematical modelling a r t a l w a y s looking for fresh ideas 
and, accordingly. Section B provides real-life examples and case studies for 
use in the classroom. 

Micros play a n important role in most subjects in the classroom and this 
is equally true in mathematical modelling courses. Section C offers ideas in 
this area from several experienced teachers. 

By reading this text, we hope that you will find useful and practical 
information which will enhance the study of mathematics both for students 
new to the subject and for experienced teachers. A subsequent and 
successor text Mathematical Modelling Courses will provide advice and 
guidance for those proposing to set up mathematical modelling courses. 
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Mathematical Modelling—are 
we Heading in the Right 
Direction? 

D . Burghes 
University of Exeter, UK 

1. INTRODUCTION 

It is only two years since our nisi international conference, yet there ha \ e 
been many changes. Nearly all our papers this time are very much focused 
on how we can teach mathematical modelling, whereas in our first 
conference, we had many papers on lecturers' favourite models, which 
often have little relevance to other teachers. 

If this change in emphasis is being reflected in the way we teach 
mathematics in school, further and higher education, then we will really be 
transforming the way we teach and students learn mathematics. In this 
chapter , I want to review progress that we have made in the teaching of 
mathematical modelling and attempt to answer the following questions. 

(i) What do we mean by mathematical modelling? 
(ii) What progress have we made in the teaching of mathematical 

modelling? 
(iii) Do we know where we are going? 
(iv) How do we get there? 

2. WHAT DO WE MEAN BY MATHEMATICAL MODELLING? 

This is not an easy question to answer! I am not sure that we could find 
complete agreement amongst our participants. I like to use a diagram of 
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the type above to describe the important features of modelling—but not all 
mathematical modelling can fit neatly into this form. Nevertheless it does 
bring home what is to me the essential feature—namely that of using 
mathemat ics to solve real problems. 

How real the problems are which can be used in modelling courses is 
open to debate . There are few totally real problems but there are some that 
are very close to reality. For example , the problem 

Design a £1 book of stamps which caters for 1st and 2nd class post in 
Grea t Britain 

is almost real i ty—the Post Office is planning to bring in £ 1 coin automatic 
machines. Unfortunately we do not know the complete background 
though—we would need to know 

(i) What do customers buying these books of s tamps actually want? 
(ii) Does the Post Office deliberately put in l p and 2ps, which are not 

usually of use, because they represent profit? 
(in) The percentage of 1st class to 2nd class post sent, 
(iv) How often will the postage rates change? 

So, in fact, the seemingly easily stated problem can soon become a project, 
which if used in a teaching situation could involve a survey of customers. 
We are clearly dealing with reali ty—although we can only rarely make the 
problem totally real. 

As another example, consider the grid below: 

P V 

T h e p rob lem here is t o find a connection between corresponding letters 
(i .e. ; with the conditions 

(i) Only use the grid lines. 
(ii) No two lines must cross or touch at a point or coincide 

(iii) N o line must pass through a different letter (e.g. A to A must not pass 
through V) . 
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It might take you a while to find the solution—indeed, I call this a ' eureka ' 
investigation since there is a breakthrough which must be made before 
success is found. (The solution is given in Appendix 1—but have a good try 
before resorting to looking up the solution.) I am sure that we can agree 
that this is a mathematical investigation, but is it modelling? Not really, in 
its present form, but we can make this sort of problem nearer reality by 
looking at the circuit diagram in Fig. 1 and asking the question 'Can it be 

Fig. 1. Circuit diagram 

redrawn with no crossovers?' Here the vertices 1-7 are fixed and the 
connections can be regarded as flexible wires which can be moved. This 
type of problem is central to efficient design of silicon chips where 
crossovers have to be insulated, with consequent increase in cost The 
solution to this problem is relatively straightforward—a possible 
configuration with no crossovers is shown in Fig. 2. We are still left with 
the question 'Is this modelling?' Again, not really—but it is certainly 
mathematical and it is connected with reality! Indeed, the real problem is 
the design of an algorithm to cope with problems of this type. You might 
like to try out your method on the circuit diagram in Fig. 3—it can be 
redrawn without crossovers (see Appendix 2). 

An algorithm for solving such problems is given in the Open University 
course T M 3 6 1 . Graphs, Networks and Design—Unit 12 

Although these examples are not modelling in the restricted sense, tne\ 
are problems, dealing with reality and needing mathematics to help in 
finding solutions—so surely we would not want to discount them from 
modelling courses. They are ail about strategy which is definitely one of the 
most important concepts in effective modelling, and we should be aiming to 
improve this skill. 

S o perhaps we should not be asking this question; let us agree t o 
accept that definitions of mathematical modelling will vary—but that this 
does not matter. What is important though, is that students on modelling 
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Fig. 2. Redrawn circuit diagram. 

Fig. 3. Circuit diagram 

courses realise that they are trying to use mathematics in solving problems 
connected with reality, and as teachers our aim should be to motivate and 
improve the skills required. 

3 . WHAT PROGRESS HAVE WE MADE? 

If we look at the many varied papers given at this conference, it is clear that 
we have made progress—there are many tutors who have been 
exper iment ing with modelling courses over the past few years. In higher 
educat ion in Grea t Britain, the Polytechnics have led the way, and most (if 
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not all) polytechnic degrees in mathematics will have courses in modelling, 
and in some it is the main theme of the applied courses throughout the 
degree. It is a similar story in many B.Ed, degrees for intending 
mathemat ics teachers, where modelling is used as a unifying theme for all 
applications of mathematics. It is only in universities that similar progress 
has not been forthcoming. Why is this? There are a number of possible 
reasons. 

(i) Many academics would argue that they are modelling all the time 
throughout applied courses—so why is a special course needed for 
modelling? 

(ii) Modelling is regarded as not quite academically acceptable—all 
sincere and ambitious lecturers should get on with the serious business 
of producing more high level research papers, and not get their hands 
dirty. 

(iii) Lecturers , often brought up exclusively in an academic environment, 
are frightened of the unknown. 

It does seem unfortunate that we have such a small university participation 
at this conference. 

A t secondary school level, the emphasis of nearly all the changes now 
taking place is towards mathematics becoming more practical and relevant. 
The assessment objectives for the GCSE, due to be examined for the first 
time in 1988, are given below. Particular note should be made of 
3.12/13/15 as well as the extra assessment objectives 3.16/17, which 
require some form of course-work assessment. These aims are very 
ambit ious, and it remains to be seen how effective they will be in practice. 

Assessment objectives 
The objectives which follow set out essential mathematical processes in 
which candidates ' at tainment will be assessed. They form a minimum list of 
qualities, abilities and skills. The weight attached to each of these 
objectives may vary for different levels of assessment within a 
differentiated system. 

Any scheme of assessment will test the ability of candidates to carry out 
the following. 

3.1 Recall, apply and interpret mathematical knowledge in the context of 
everyday situations. 

3.2 Set out mathematical work, including the solution of problems, in a 
logical and clear form using appropriate symbols and terminology. 

3.3 Organise, interpret and present information accurately in written, 
tabular, graphical and diagrammatic forms. 

3.4 Perform calculations by suitable methods. 
3 .5 Use an electronic calculator. 
3.6 Unders tand systems of measurement in everyday use and make use 

of them in the solution of problems. 
3 .7 Est imate, approximate and work to degrees of accuracy appropriate 

to the context. 
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3.8 Use mathematical and other instruments to measure and to draw to 
an acceptable degree of accuracy. 

3.9 Recognise pat terns and structures in a variety of si tuations, and form 
generalisations. 

3.10 Interpret , transform and make appropr ia te use of mathematical 
s ta tements expressed in words or symbols. 

3.11 Recognise and use spatial relationships in two and three dimensions, 
particularly in solving problems. 

3.12 Analyse a problem, .select a suitable strategy and apply an 
appropria te technique to obtain its solution. 

3.13 Apply combinat ions of mathematical skills and techniques in 
problem solving. 

3.14 Make logical deductions from given mathematical data. 
3.15 Respond to a problem relating to a relatively unstructured situation 

by translating it into an appropriately structured form. 
Two further assessment objectives can be fully realised only by assessing 
work carried out by candidates in addition to time-limited written 
examinat ions. From 1988 to 1990 all Examining Groups must provide at 
least one scheme which includes some elements of these two objectives. 
From 1991 these objectives must be realised fully in all schemes. 
3.16 Respond orally to questions about mathematics , discuss 

mathematical ideas and carry out mental calculations. 
3.17 Carry out practical and investigational work, and under take 

extended pieces of work. 

Also, the draft national grade criteria document , recently published by 
the Schools Examinat ions Council, ment ions mathematical modell ing as 
one of a number of topics which must be mastered by candidates passing at 
the upper grades. 

4. DO WE KNOW WHERE WE ARE GOING? 

So the past few years has seen much progress on the theme of teaching 
mathemat ics through its applications, with particular emphasis on 
mathematical modelling. There are . however, still many problems in 
mathemat ics educat ion and it is not suggested that modell ing is going to 
solve them all. One associated problem is the assessment of modelling. 
There are many possible forms of assessment, for example: 

(i) Close book examinat ions 
(ii) Mathemat ics practicals 

(iii) Projects 
(iv) Con t inuous assessment 
(v) Essays 

(vi) G r o u p assessment 
(vii) N o assessment 

1 have no doubt that my most effective modelling courses have been given 
using (v i i )—no assessment. The courses were for teachers who were well 
mot ivated, and assessment would have been a real nuisance—indeed, it 
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would undoubtedly have done educational harm. I realise though t h a t t h e 
ideal situation will not usually exist—students will not b e so we l l 
motivated, and anyway C N A A . for e x a m p l e , will insist nn s o m e fo rm of 
assessment. 

One of the most important benefits, to my mind, of modelling courses, is 
the interaction between students, working in groups. Much of mathematics 
does not require interaction, but modelling gives a welcome opportunity 
for group work. This will also be true of course-work assignments for the 
new GCSE. The difficulty will again be that of assessment—how do you 
assess contributions of different members of a team? Indeed, is it fair to try 
to do so? 

So, although I welcome the move that we are making, and 1 look forward 
to future experiments, 1 think that we should exercise caution and at tempt 
to assess the developments that we are making. 

5. H O W DO WE GET THERE? 

This is difficult to answer, since I am not sure where we are going. One 
thing though that I am convinced about—staff involved in teaching 
modelling courses should either 

(i) have direct experience in applying maths in practical problem-solving 
situations 

or 

(ii) have been involved in substantial in-service work, which can give 
simulated experience in modelling 

I think it is a recipe for disaster if tutors, without the relevant background 
and experience, have to teach modelling courses. N o w that w e have 
collectively more experience in teaching modelling courses, it is t ime, both 
at school and higher education, to provide intensive in-service courses in 
modelling. The experience gained on such courses must be a minimum 
requirement before embarking on teaching a modelling course. 

As an example of the sort of simulated modelling experience that can be 
given on in-service courses, try the following problem: 

Design a method of assessing the reading age of an article and use it to 
find the reading age of the following four articles 

Is today 's single girl a free-wheeling, free-loving lady like Connie in the TV 
series? Or is she really a lonely person who longs to find a par tner and settle 
down? 
There are 1,750,000 single women in Britain today. To find out the truth 
about their way of life the News of the World conducted an intensive 
survey among those aged from 20 to 4 4 . 

And our researchers have come up with some ^ '^nishing facts - N u n ^ \ 
and the single girl. 

A hefty percentage, nearly 20 per cent, of single girls w V rh,-y n>r*\"T 
want a permanent relationship at present. 
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Women who have had many lovers are not so keen to settle into wedded 
bliss. There was one swinger in every 100 singles who preferred one night 
stands or a series of par tners to any kind of commit ted relationship. 

A n d living together permanently without marriage is surprisingly 
unpopular . Less than one in five would be happy with 'living in sin.' 

Yet 65 per cent of women would be happy to live with a boyfriend 
B E F O R E marr iage. 

Indeed. 18 per cent of those in our survey had already done so at one 
t ime, the highest numbers of those ' trying him out ' being Southern 
middle-class girls. 

Girls from the Midlands were least likely to consider a live-in lover. 

After Mr Gromyko 

If nothing else the apppointment of Mr Andrei G r o m y k o as Soviet 
President is the end of an era of sorts. The Methuselah of world 
d ip lomacy—he was casting vetoes in the United Nations Security Council 
earning for himself the nickname of 'Old Stone Face ' when Ronald Reagan 
was still busy making movies—has been shunted sideways to fulfil a largely 
ceremonial , however necessary, public relations exercise in the Kremlin. 
After spending nearly 30 years fairly successfully reconciling the national 
interests of the Soviet Union with its professed goal of world revolution, 
Mr G r o m y k o now has to settle for a bit of peace and quiet and the respect 
and status (but little power) a Soviet presidency usually entails. 

Recovering, Western leaders might well be asking what happens next in 
Russian foreign policy. On the surface the appoin tment as Foreign 
Minister of a charming Georgian party boss, and three-star police general , 
without any foreign affairs experience apart from the odd trip to a Third 
World country, is an exercise in Russian cynicism. It could also be 
interpreted as another example of Mr Mikhail Gorbachev ' s desperate 
house-cleaning—like other sectors of the Russian bureaucracy the Foreign 
Ministry has become set in its ways and even corrupt . Yet ultimately, one 
suspects, we are about to see a change of style, not of substance, in Russian 
foreign policy with Mr Gorbachev, as befits a Russian leader, doing all the 
essential globe-trotting, talking and negotiating, a Nikita Khrushchev of 
the 1980s and just possibly into the next century. 

It should be noted that Mr Gorbachev has already shown he knows a 
thing or two about familiar hardline anti-Western rhetoric, and there is 
precious little evidence of any slowdown in the Russian arms build-up. To 
take just one example , his 'mora tor ium' on SS-20 missile deployment has 
already been exposed as a sham. The Soviet Union 's foreign policy, like 
that of any modern State, is conducted in the interests of the State as 
perceived by the likes of Mr Gorbachev, his Poli tburo and his military, 
albeit from time to time distorted by the lens of Marxist-Leninism. A 
deba te is already taking place in the United States over prospects for the 
success of the meeting in Geneva in November between Mr Gorbachev 
and Mr Reagan. It is a long way ahead but it is safe to say that the outlook 
for an improvement in E a s t - W e s t relations remains stony. 
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We'll carry on until the scabs are 6ft under 

The bridge leaving Walmer is known as Scab Bridge because of the hate 
message daubed on it. 

A mile down the road, pubs like the Yew Tree on the Mill Hill estate are 
no-go areas to miners who worked. 

A regular there said: 'If one, just one, of those bastards puts a foot in 
here he'll have his teeth knocked down his throat." 

Another no-go area is the Kent Miners' Welfare Club, where a man on 
the door spelled out the latest club rule. 

'No scabs,' he snapped. 'Those bloody traitors are the last people on 
earth who'd be welcome here. ' 

Pit safety worker Peter Brindley, a veteran of the 1974 strike which 
toppled the Heath Government—in which he was the first Kent picket 
arrested—declared: 'Our lads are being soft on the scabs. You can't do 
enough to them. It will continue until they're all six feet under. ' 

Peter, 35, and his wife Mary, 38, still feel bitter about the way their 
middle-class neighbours treated them during the hard, lean months of the 
strike. 

He said: 'Not one of them offered us help. We didn't even get a few 
words of encouragement . ' 

9. Hyena and Hare 

Hyena had no water. He said to himself, 'Now I must dig a well.' So off he 
went with his spade over his shoulder, and on his way he met neighbour 
Hare . 

'Good day, neighbour Hare! ' 
'Good day, neighbour Hyena! Where are y o u going with your spade over 

your shoulder? ' 
' I 'm going to dig a well, because I have no water. ' 
Hare said, I have no water, either. ' 
Hyena said, 'Then come and help me to dig, and we will share the well 

water. ' 
Hare said, 'What do I want with a well? If I am thirsty in the morning, 1 

drink the dew on the grass. If I am thirsty in the evening—there is the dew 
again. ' 

Hyena said, 'Then you won't help me dig?' 
Hare said, 'No, 1 am busy about other matters. ' 
So Hyena dug his well all by himself. And early next morning he took a 

bucket and went to his well to fetch water. What did he see? He saw Hare ' s 
footprints all round the well. 

'Oh ho!" said he, 'Little Liar Hare! You said you only drank the dew, but 
now you have been drinking my water! For that I will punish you!" 

Hyena ran home; he fetched his axe and his saw. He cut down a tree 
branch, and out of the branch he made a big doll. He covered the doll all 
over with sticky tar. Now she looked just like a little black girl. It took him 
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all day making that doll; and when evening came, he put her to lean over 
the well. Then he went home to bed. 

In the night the moon was shining among clouds. Now see—someone 
coming to the well: tipperty-tip. tipperty-lip, Hare coming with his bucket to 
fetch water . What does he see by the dim light of the moon? He sees a little 
black girl standing to look down into the well. No, no. that won' t do! The 
little black girl may go and tell Hyena about Hare taking water from his 
well. So Hare says, 'Little black girl, you're trespassing! G o away! ' 

Little black girl doesn ' t move, doesn ' t speak. 
Hare gets angry. 'Little black girl, go away, or I shall smack you on the 

neck! ' 
Little black girl doesn' t move. 
Hare lifts his hand. Smack.' 
What happens? His hand sticks to the tar. 
'Little black girl, let go my hand, or 1 shall smack you over the eyes with 

my o ther hand. ' 
Little black girl doesn ' t move. 
H a r e lifts his o ther hand. Smack! His o ther hand sticks. 
'Lit t le black girl, let go, let go! Little black girl, do you see this foot? If 

you don ' t let go 1 shall kick you! I shall kick you so hard that you'll think a 
horse had lashed out at you!' 

(Possible solutions are given in Appendix 3.) 

As well as providing courses, it is t ime we organised ourselves and 
provided an up-to-date database of possible problems and projects for 
modelling courses. Teachers need a constant flow of resource material , and 
it is time to use today's technology to provide us with the resources needed . 
For the 1 1 - 1 6 age range, the Depar tment of T rade and Industry is 
considering the introduction of a national resource database for school 
teachers. We urgently need a similar initiative in higher educat ion for 
mathemat ics (and other subjects?). It cou/d not only include suggestions 
for projects , but also relevant data and information. 

So here is a plea for: (i) more in-service courses and (ii) a da tabase for 
suitable resources. I hope that the T A M group can help in taking up these 
suggestions. 

6. CONCLUDING REMARKS 

So why do we want to bring in modelling courses? The simple answer is 
motivation—and not just motivation for our s tudents , but self-motivation. 
We want to believe that mathematics is an important useful tool, and this is 
ou r a t t empt to show this. 

Whilst there are good reasons for introducing courses which teach our 
s tudents : how to 

(l) apply mathematical analysis to practical situations, 
(ii) improve their a t t i tudes and strategy to problem .solving, 

(iii) develop their adaptability to cope with changing situations. 



Mathematical Modelling—Heading in the Right Direction 21 

I still believe that the most important rcj>un i> a iu i ui p r o v i d i n g t u t u i s with 
the motivation that they need. A well motivated and enthusiastic teacher 
solves all the problems in mathematics education at a stroke! 

APPENDIX 1: SOLUTION TO GRID PROBLEM 

p 

•"'•ML 

L SSJ * 

i 

A K 

K 

R -RRJ 

P V 

APPENDIX 2 



Mathematical Modelling—Methodology, Models and Micros 

APPENDIX 3: READING ACJE MODELS 

(i) tog index 

where A is the number of words in the passage, n is the number of 
sentences in the passage and L is the number of words containing 
three or more syllables (excluding those ending in -ed or -ing). 

(u) Forecast formula 

\ 

R 

where \ ^ the number of one-syllable words in a passage of 150 

w o r c K 

(iii) Smog formula 

/? = 8 t ^ 
where p is the number of words with three or more syllables in three 
passages each of 10 sentences long. 

(iv) Flesch formula 

F = 206.635 - U.846.T - 1.015y 

where x is the exact number of syllables per 100 words and v is the 
average number of words per sentence, and the figures below indicate 
the reading age given the F value. You can also use the two outside 
sides to directly find the reading age. Just join up the x and v values— 
the intersection on the middle scale gives the reading age. 
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SUMMARY 

The main purpose of this chapter is to explain how a mathematical model 
incorporating multiple measurements taken on several occasions might be 
constructed and used to compare two groups of pupils in terms of growth in 
mathematical ability. 

To investigate the structural relationships among successive 
measurements of the latent variable (mathematical ability as measured by 
two tests), a series of three-wave two-variable models is developed using 
techniques drawn from a number of factor-analytic models: the multi-wave 
multi-variable model, the simultaneous factor-analysis model in several 
populations, and the structural equation models with structured means. The 
chapter illustrates the use of the LISREL programme for models with 
structured means, and in particular demonstrates its usefulness for 
investigating the structural relationships among the three successive 
measurements of mathematical ability taken at yearly intervals. 

The emphasis is on the methodological issues arising from the 
application of the structural equation model with structured means to the 
case of two structural equations, one of which contains two latent variables. 
The chapter discusses a process of model improvement based upon fitting a 
series of models, one derived from the other, and comparing alternative 
models for goodness of fit by examining the differences between their j f 
values. It also describes a method for estimating the contribution of 
individual parameters by constructing a series of nested models, each 
model being more restricted than the previous one in that o n e additional 
parameter is constrained. 

1. INTRODUCTION 

The main purpose of this chapter is to explain how a mathematical model 
incorporating multiple measurements taken on several occasions might be 
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constructed and used to compare two groups of students, each following a 
different programme, in terms of growth in mathematical ability from 
Grade 4 to Grade 6. The chapter illustrates the use of the LISREL 
program for models with structured means, and also demonstrates its 
usefulness for investigating the structural relationships among 
measurements of one true variable taken at yearly intervals. 

To investigate the structural relationships among the successive 
measurements of the true variable postulated in the present study, a series 
of three-wave two-variable models was developed using techniques drawn 
from a number of existing factor-analytic models: the multi-wave 
multi-variable model (Joreskog. 1979), the simultaneous factor-analysis 
model in several populations (Joreskog, 1971), and the structural equation 
models with structured means (Sorbom, 1974, 1978). The latter models 
are of particular relevance to this study, though the examples discussed by 
Sbrbom (1978, 1982) all deal with a single structural equation and a single 
latent covariate, whereas this study uses a model with two structural 
equations, one of which contains two latent covariates. 

Each of the models developed in the present study was tested for 
goodness of fit by examining the chi-square statistic, the residuals, and the 
difference in chi-square values between successive models of a series 
(Joreskog. 1979; Bentler, 1982). 

2. DESCRIPTION OF THE DATA 

The data used in this study were drawn from the data pool of the Canadian 
Bilingual Education Project (Swain and Lapkin, 1981). Data on 
achievement in English as a first language, French as a second language, 
and academic subjects were collected in the course of a large-scale 
evaluation of French Immersion and Regular programmes. Students 
enrolled in a French Immersion programme get their instruction in French, 
their second language, while students enrolled in the Regular programme 
get their instruction in English, their first language. From 1970 to 1979 
yearly evaluations were carried out to compare the academic achievement 
of students in the Immersion programme with that of students in the 
Regular programme. 

For the present study a longitudinal set of data was extracted from the 
existing pool, encompassing the 144 Immersion students and 59 Regular 
students for whom there were complete results for the Canadian Test of 
Basic Skills (CTBS) (Hieronymus et al., 1974) tests in Mathematics 
Concepts and Mathematics Problems at three successive grade levels 
(Grades 4. 5 and 6). There are fewer Regular than Immersion students in 
the longitudinal data because of the focus of the study for which the data 
was originally collected. When the data were collected the same Immersion 
students were tracked from year to year, whereas the composition of the 
Regular groups changed from year to year. 

Each student had six tests scores, two at each grade level; all tests were 
administered in English. The two tests were as follows. 
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(1) Mathematics Concepts A test of about 30 multiple-choice items 
designed to test how well the student understands the number system 
and the terms and operations used in mathematics. 

(2) Mathematics Problems A test of about 30 multiple-choice items 
designed to assess the student 's skills in solving mathematical 
problems, using single-step or multiple-step problems. 

The individual student scores are grade equivalent. In other words, the 
population mean score for Grade 4 was normalised to 40 at the beginning 
of the school year, to 45 five months later (the end of January), and to 50 
at the end of June (or the beginning of Grade 5). Similarly the mean is 55 
in the middle of Grade 5 and 65 in the middle of Grade 6. Since the tests 
were administered in April, the eighth month of the school year, the mean 
scores would be expected to be 48 , 58 , and 68 in Grades 4, 5, and 6, 
respectively. 

3. M E T H O D 

3.1 The measurement model 
As shown in Fig. 1, at each grade level the two tests. Mathematics 
Concepts and Mathematics Problems, are taken to be indicators of the 
latent variable n mathematical ability; represent the latent 
variable mathematical ability in Grades 4, 5 and 6 respectively. 

Fig. 1. Model for the measurement of growth in mathematical ability 
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The measurement model for mathematical ability is simply 

The measurement equation assumes that the two tests. Mathematics 
Concepts and Mathematics Problems, measure a single latent variable on 
each occasion. The scale for each latent variable was set to be that of the 
test Mathematics Concepts, by fixing the appropriate factor loading equal 
to one for both groups. Also the measurement properties of the tests were 
constrained to be equal across the two groups; that is, they had the same 
origin of measurement (v,), the same loadings (X,), and the same error 
variances 

3.2 The structural model 
The structural model is represented by the equation: 

The structural model specifies a causal relationship among the true 
variables representing mathematical ability at Grades 4, 5, and 6. 
Specifically, it implies that rjt has a direct effect on both I J 5 and r\b, and that 
>I5 has an affect only on 

It should be added that a more restricted quasi-simplex model (Joreskog, 
1979), one in which there is no direct effect of but in 
which there is an indirect effect mediated through was also postulated. 

The origin of measurement and the mean of the latent variable cannot be 
identified simultaneously, but the differences between the groups can be 
estimated. When the mean of the latent variable, f/4 is fixed to zero for the 
Immersion group, the parameter representing the expectation of for the 
Regular group is the mean difference in initial mathematical ability 
between the two groups. The same reasoning applies to only 
differences between the groups can be estimated. However, it is 
meaningful to consider these differences as the effect of programme when 
P parameters (the regression weights) can be shown to be equal in the two 
groups. 

4 . P R O C E D U R E 

Following Joreskog and Sorbom (1981), the present analysis of mean 
structures was carried out on an augmented moment matrix rather than on 
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Standard 
Test C4 P4 C5 P5 C6 P6 Means deviat ions 

Concepts 4 1 49 .20 9.15 
Problems 4 0.75 1 48 .10 9.53 
Concepts 5 0.73 0.68 1 61 .33 9.56 
Problems 5 0.63 0.64 0.70 1 58.61 10.32 
Concepts 6 0.71 0.62 0.73 0.69 1 73.24 11.54 
Problems 6 0.60 0.57 0.67 0.64 0.73 1 67 .37 11.60 

a covariance matrix (i.e. a constant variable 1 is added) . The input to the 
L1SREL programme (Tables 1 and 2) consisted of a correlation matrix, a 
vector of standard deviations, and a vector of means. 

The differences between the two groups were investigated by using a 
series of models. An initial model was first postulated, in which the 
measurement parameters were constrained to be invariant across the two 
groups but the structural parameters were left free in both groups. After 
verifying that this initial model yielded an acceptable fit, a series of nested 
models was tested, each new model being more restricted than the previous 
one in that one additional parameter is constrained. 

Testing nested models makes it possible to assess the contribution of an 
individual parameter to the goodness of fit, through the following 
procedure. If A is a model with ,r degrees of freedom, a new model B may 
be formulated such that one additional parameter is either fixed to the 
value zero or constrained to be invariant across the two groups. B, then, 
has x + 1 degrees of freedom. The new restriction can then be tested by 
looking at the chi-square difference (A -B) with 1 degree of freedom. If 
the difference between the chi square for A and that for B does not exceed 
the critical value at a chosen level, then the new restriction cannot be 
rejected. If, on the other hand, the chi-square difference is large, then the 
new restriction imposed may be rejected in favour of the original model 
(the model with fewer constraints on its parameters) . 

Table 2. Correla t ions , means and standard deviat ions. Regular G r o u p 
M = 59 

Test C4 P4 C5 P5 C6 P6 Means 
Standard 

deviations 

Concepts 4 1 49.24 9.40 
Problems 4 0.66 1 46.58 9.30 
Concepts 5 0.63 0.52 1 58.47 9.82 
Problems 5 0.64 0.66 0.61 1 55.14 10.86 
Concepts 6 0.62 0.55 0.72 0.64 1 70.76 12.14 
Problems 6 0.49 0.59 0.49 0.61 0.67 1 68 .08 10.81 

Table 1. Correlat ions, means and s tandard deviations. Immersion G r o u p 
N = 144 
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5. RESULTS AND DISCUSSION 

The initial model tested in the present study ( M l ) postulated the 
equivalence of the measurement properties (equality of factor loadings, 
equality of the variances of measurement errors) as well as that of the 
errors in the structural equation, across the two groups. This initial model 
can be stated more formally as follows: A,, and v, are invariant across 
the two groups. 

Of the 27 parameters to be estimated, 18 are invariant across the two 
groups: 3 factor loadings, 6 uniquenesses, 3 regression residuals and 6 
origin of measurements. The remaining 9, 6 betas (3 for each group) 
and 3 alphas (for one group only), are to be estimated. Since there were 54 
unique elements in the input data (each group had 15 correlations, 6 
standard deviations and 6 means) and 27 parameters to be estimated, the 
model had 27 degrees of freedom (54 - 27 = 27). The chi square for M l 
is 33.64 with 27 degrees of freedom, indicating that the fit is acceptable. 

A more restricted model (M2) was then tested by fixing the parameter 
0 64 to zero for the Regular group. M2 is in effect a quasi-simplex model for 
the Regular group. This new model yielded a chi square of 34.92 with 28 
degrees of freedom. The difference between the chi-square values for M l 
and M2 is not significant, indicating that the additional restriction imposed 
is reasonable, that is, that a quasi-simplex model is indeed adequate for the 
Regular group. 

To determine whether the quasi-simplex model was adequate for both 
gToups, the next model tested (M3) was one in which the beta parameter 

was set to zero for the Immersion group as well. This model is also 
acceptable, as indicated by both the chi square and the chi-square 
difference (M3 - M 2 ) . 

5.1 lnvariance of the beta parameters 
A restriction was then imposed on M3 by constraining the parameter 0 M to 
be invariant across the two groups. The resulting model (M4) yielded a chi 
square of 34.93 with 30 degrees of freedom. The difference between the 
chi-square values for M4 and M3 with 1 degree of freedom is not 
significant, indicating that the hypothesis that the two groups have equal 
054 parameters cannot be rejected. This establishes that the relationships 
between Grade 5 and Grade 4 are the same in both groups. 

The next model tested (M5) is a test of the hypothesis that the 
relationship between Grade 5 and Grade 6 are the same for the two 
groups. This mode) is consistent with the data ( / 2 = 34.94, d.f. = 31). 
Furthermore, the difference between the chi-square values for the last two 
models (M4 and M5) is only 0.01. Consequently, the two non-zero beta 
coefficients, 0 ? 4 and 0,,<, can be regarded as equal over the two groups. The 
conclusion is that the entire structural relationship (except the intercepts) 
of the true variables is identical for both groups (see Table 3). 

5.2 Differences between the alpha parameters 
Once it has been shown that the betas are equal for the two groups, that is 
the use of a common regression coefficient is appropriate, it is meaningful 
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(1) M l ; 
(2) M 2 ; Ml and 0« 4 - 0 
(3) M 3 : M2 and pM = 0 
(4) M4; M 3 and - /fl, 
(5) M5: M4 and fi% - /?! 
(6) M 6 : M5 and xs = U 
(7) M 7 : M 5 and <xh = 0 

X2 d.f. P P 

33.64 2 7 0 .17 __ 

34.92 28 0 . 1 7 1.28 n.s. 
34 .93 29 0 .21 0.01 n.s. 
34 .93 3 0 0 .24 n.s. 
?4.94 31 0 .29 u . u i '•( 

42.11 32 0.11 7.17 o .o i 
38 .23 32 0.21 3 2 9 0 .10 

to consider the pa ramete r alpha as an es t imate o f t h e difference be tween 
the two programmes . 

A further model (M6) was then constructed to test the hypothesis that 
the difference between the two programmes is zero at G r a d e 5 . This model 
yielded a chi square of 42 .11 with 32 degrees of f reedom, a substantially 
worse fit than M 5 . 'The difference between the chi-square values for M6 
and M5 is 7.17 with 1 degree of freedom, which is significant at the 0.01 
level. This would indicate that the difference between the two p rog rammes 
at G r a d e 5 (ar s = 2.52) is s t a t i s t i c a l l y s i gn i f i c an t . 

3.0-i 

• immersion 

x Regular 

Grade 4 Grade 5 Grade 6 

Hg 2. Differences between the two groups in growth in mathematical afetfrty 

Table 3 . Chi s q u a r e difference tests 

I2 
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The next model constructed (M7) tests the hypothesis that the difference 
between the two programmes at Grade 6 (ab) is zero when the initial 
differences are controlled for. This model yielded a chi square of 38.23, 
with 32 degrees of freedom. However, the difference between the 
chi-square values for M5 and M7 is 3.29 with I degree of freedom 
(p = 0 , 1 0 ) which would indicate that the difference between the two 
programmes at Grade 6 (a,, = 2.15) is marginally significant (see Table 4). 

Table 4. Maximum likelihood estimates and 
standard errors 

Parameter Model M5 

72.97(0.97) 
K„ 67.95(0.91) 

61.38(0.79) 
v4 58.52(0.85) 
v, 49.38(0.76) 
v2 47.82(0.77) 

4 0.85(0.06) 
1.04(0.07) 

h 0.96(0.07) 

/><., 1.20(0.08) 
065 0.93(0.07) 

U 13.53(5.68) 
<5 10.46(3.34) 
«\ 64.87(8.67) 

Regular Immersion 
«» 2.15(1.17) 0 
« 5 - 2 . 52 (0 .93 ) 0 
* 4 - 0 . 5 8 ( 1 . 3 6 ) 0 

r 34.94 d.t. - 3 1 p = 0.29 

To summarise, the analysis shows that the measurement properties of 
the tests were the same for the two groups. In both groups the relationships 
between Grades 4 and 5 and between Grades 5 and 6 from the aspect of 
mathematics ability can be described by the same quasi-simplex model. 
The results also indicate that the two groups started with equivalent 
mathematics ability. As shown in Fig. 2, the Immersion group had a 
significant higher level (2.52 points) of growth in mathematics ability than 
the Regular group at Grade 5; in the subsequent year, however, the 
Regular group exceeded the Immersion group by 2.15 points in its average 
growth. In comparison with the Regular group, the Immersion group grew 
more rapidly from Grade 4 to 5 and more slowly Irom Grade 5 to 6. 

These results were arrived at by testing several models sequentially, each 
model being more restrictive than its predecessor. This procedure is 
essentially an exploratory one. To confirm the results obtained in this study 
it wou ld be necessary to test the model on a different set of data. 
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Instruction—Empirical 
Research Towards an 
Appropriate Introduction of 
Concepts 
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Gesamihochschule Kassel (FRG) 

SUMMARY 

In the discussion about modelling in mathematics instruction it is often 
emphasised that modelling is not appropriate for the introduction of 
mathematical concepts. Rather one should use, as far as possible, concepts 
and techniques the students have been familiar with which for some years . 

According to this point of view modelling should improve the s tudents ' 
ability to apply mathematical topics and techniques in real world situations, 
but not try to increase the students' mathematical knowledge. This point of 
view constructs a false contrast between the learning of mathematics 
and the learning of applying mathematics. 

This chapter reports an empirical investigation that points out that there 
exists a relationship between the methodical procedure in the introduction 
of mathematical topics and techniques and the ability of the students to use 
these topics and techniques in the modelling process. The investigation 
uses the example of the concept of the derivative to examine the following 
questions. 

(1) How far do students reach central skills which are to interpret 
mathematical concepts in the real world and to define real world 
situations with mathematical concepts by an application-oriented 
introduction of concepts in the modelling process? 

(2) How far do students perform these real world interpretations or, 
accordingly, these mathematical descriptions after a mathematical 
introduction of these concepts as 'transfer'? 
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By this means, it is intended to compare some possibilities to introduce the 
concept of the derivative, for example rates of change, limit of the slopes of 
the secant line with regard to these questions. 

This investigation allows us to draw the following conclusion: the 
development of abilities, which are central for the modelling process, 
strongly depends on an appropriate introduction of the mathematical 
topics and techniques and further modelling examples absolutely belong to 
such an adequate introduction. 

1. INTRODUCTION 

In the discussion about modelling in mathematics it is often emphasised 
that modelling is not appropriate for the introduction of mathematical 
concepts. Rather one should use as far as possible topics and techniques 
the students have been familiar with for some years. For example Burghes 
and Huntley formulate: 

We must equally warn you not to expect them (the students) to be 
capable of using newly assimilated mathematics in a modelling context. 
They will be happy and willing to use familiar mathematical concepts 
and topics, but will find it very difficult indeed to use a topic just covered 
. . .—in modelling you should not be trying to increase mathematical 
knowledge, but to improve the ability to apply known mathematical 
topics in practical situations. In fact, whenever practical, we try to avoid 
any techniques learned during the previous year. (Burghes and Huntley, 
1982, p . 739f) 

O k e similarly writes: 

In an introductory course in modelling, the level of mathematics 
assumed should be several years below that of current achievement. 
(Oke , 1984. p. 91) 

This point of view constructs a false contradiction between the learning of 
mathematics and the learning of applying mathematics. In what follows I 
will describe an empirical investigation which points out that there exists a 
relationship between the method of introducing mathematical concepts 
and the ability of the students to use these concepts in real world examples 
and the modelling process. The research was carried out using the example 
of the concept of the derivative. This investigation allows us to draw the 
following conclusion: the acquisition of abilities which are central for the 
modelling process strongly depends on an appropriate introduction of the 
mathematical concepts and techniques and further modelling examples 
absolutely belong to such an adequate introduction. 

2. METHODOLOGICAL PROCEDURE IN THE EMPIRICAL 
INVESTIGATION 

1 used the case study method for the empirical research, as it is described 
for example by Stake (1978). Empirical-statistical methods were not used. 
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because in the last few years the limitations of these methods have been 
pointed out (see e.g. Stenhouse, 1982). 

It has been debated, for example, whether the results of 
empirical-statistical research are meaningful, since it is impossible to 
isolate and control all the relevant variables which influence complex 
situations like classroom instruction. Further it has been pointed out that 
actual theory deficits in the didactics of mathematics instruction do 
not allow research based on hypotheses which is implied by 
empirical-statistical methods. 

Case studies aim at a description of the complex classroom situation in 
its entirety. They try to illustrate certain regularities within the exemplary 
description of individual cases in order to come to hypotheses. Therefore 
the limitations of the following investigation are evident: the investigation 
contains observations about individual cases and at first it is only possible 
to confirm facts about individual cases. But it is plausible to generalise the 
observations to a certain extent. 

For the following investigation 1 have chosen the concept of the 
derivative, because it is on the one hand a central concept for mathematics 
instruction in the 'gymnasialen Oberstufe'. which can be compared with 
the sixth form in the British school system. On the other hand, the usual 
methods of introduction are typical for different orientations of 
mathematics instruction, that is applications versus pure mathematics. 

1 used the following method in the research: I did not test the 
relationship between the introduction of concepts and the applying and 
modelling abilities with a modelling example, because the modelling 
process is influenced by a lot of uncontrollable factors like foreknowledge 
and previous experiences of the students, mathematical knowledge from 
other areas like calculus. Rather I carried out the research on component 
skills, which are relevant in particular phases of the modelling process, 
as follows. 

(a) Within the phase of model formulation the ability of the students to 
define mathematically a real world situation with the difference 
quotient and the derivative. 

(b) Within the phase of the interpretation of the results the ability of the 
students to interpret difference quotient and derivative in a real world 
situation. 

(c) Within the phase of mathematical reasoning in the model the ability of 
the students to use the derivative to solve a real world problem. 

The comprehensive research of Treilibs to a 'general modelling ability' and 
to 'component skills' in the phase of model formulation suggests that there 
exists a close correlation between the 'component skills' necessary in 
particular phases and a 'general modelling ability' (see Treilibs, 1979). 

In nine classes of the 'gymnasialen Oberstufe' I carried out a test with 
approximately 150 17-year-old students (see Fig. 1), which should 
examine how far the students have the above-mentioned component skills. 
Thereby tasks 4 and 5 refer to the ability to mathematically define a real 



T E S T 1-OR I H E D E R I V A T I V E 

1. Which ideas do you connect with the concept of the difference q u o t i e n t 9 

2. Which ideas do you connect with the concept of the derivative? 
3. In terpre t geometrically both concepts with your own mathemat ica l example . 
4. Interpret both concepts with your own real world example . 
5. The atmospheric pressure decreases with the al t i tude. A certain a tmospher ic 

pressure belongs to each alt i tude. 
Define mathematically the concepts of 'mean incline of a tmospher ic pressure' 
and 'local incline of atmospheric pressure ' with the difference quot ient and the 
derivative. 

6. Declare the real world meaning of AT and fix) 
fix+h) -fix) fix + h) -fix) 

x fix) hm 
n d^o h 

Average velocity of Ins tan taneous velocity 
the growth of a of the growth of a 
bacteria culture bacteria culture 

7. The amount of petrol , used by a car. Petrol, Hs) 
depends on the travelled distance e.g. like 
the plot ted graph. 
W e deno te the distance with v (in km) 
and the corresponding petrol 
consumption with )(s) (in 1). 

In terpre t 
f(s+h)-f(s) fU+h)-f(s) 

; and Urn : 

8. A cylindrical vessel contains particles of a not 
homogenous scat tered liquid. 
We deno te the volume of the vessel up to a (variable) position by x (in cm-'), e.g. 

Fur ther , we denote the (approximate) number of particles, which are in the 
volume x with f(x) ( the derivative exists). Number of 
We examine a ' snapshot ' , that means we particles, k*) 
do not consider the time factor, 

Interpret 
fix + / i ) -fix) 

and lim 
A-0 

fix+h) - fix) 

. The production of goods needs certain 
efforts, which yield costs (e.g. wages 
of the employees , operat ing costs of 
the machines, rent for the buildings, 
cost for the raw materials). A certain 
sum of costs belongs to each produced 
amount of a certain commodity. 

Volume, x 

Costs 

Units of a certain 
commodity 

The corresponding function linking a commodity with costs is called the 'cost 
function". We denote the cost function with r Then c(x) = cost to produce v 
units for a certain commodity. 
Where is it profitable to raise product ion? Try to describe the .IT-I using the 
derivative (or slope of the function). 

Fig. 1. Test . 
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world situation with a difference quotient and a derivative (aspect (a)) , 
tasks 6 to 8 to the ability to interpret a difference quotient and a derivative 
in real world situations (aspect (b)), task 9 to the ability to solve an easy 
real world problem with the derivative (aspect (c)). Tasks 1 to 3 should 
demonstrate the students' conceptions of a difference quotient and a 
derivative, which might be helpful within the interpretation of the results to 
questions 4 - 9 . Aspect (c) will not be considered, because the results to 
question 9 were not very meaningful. 

All the students had learned the concept of the derivative 1-2 months 
earlier, but in very different ways. 

In order to keep the description clearly arranged and to avoid distortion 
through strong differences in the ability level of the courses, I will restrict 
the presentation to four courses. These four courses were on a similar 
ability level, but the derivative had been introduced in different ways, 
as follows. 

— Course Al: The difference quotient was introduced as rate of change in 
several real world examples, the concept of the derivative was 
developed as local rate of change within a continuous real world 
situation (average and instantaneous speed), the newly introduced 
concepts were interpreted in several real world situations. 

— Course A2: Similar procedure as in course A l ; but discrete situations 
were emphasised along with the difference quotient, the concept of the 
derivative was introduced in a different terminology and the newly 
introduced concepts were not interpreted in real world situations. 

— Course G l : The difference quotient and the derivative were developed 
out of the local geometrical problem of the secant and the tangent line 
with detailed graphical illustrations. 

— Course G2: Similar procedure as in course G l , but global conceptions 
were emphasised; it was started with graphical differentiation, the 
derivative was then developed along with the problem of the secant and 
the tangent line, immediately followed by detailed global examinations 
of functions. 

In al! four courses the derivative was defined as the limit of the difference 
quotient. In the following 1 will denote the courses A l and A2 as 'applied 
courses' and the courses G l and G2 as 'geometrically oriented courses ' . 

I calculated precise percentages considering the evaluation of the 
students' answers. However, these numbers indicate only rough tendencies 
and should not be overestimated, because the underlying population size 
was very small. Therefore 1 will additionally analyse the students ' answers 
for underlying misconceptions or false patterns for the interpretation of the 
concepts. As the answers of the students were influenced by their previous 
experiences, 1 asked the students for the origin of their interpretations after 
the test. 

3. RESULTS O F THE EMPIRICAL INVESTIGATION 

The students' answers to the questions, which ideas they connected with 
the difference quotient and the derivative and the given graphical 
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illustrations (questions 1-3) indicated that the different methods of 
introducing the difference quotient and the derivative led to very different 
conceptions of them by the students. 

With the students of the applied course A1 no uniform conception ot the 
difference quotient and the derivative could be recognised. The students 
had not only local geometrical ideas about the difference quotient (slope of 
the secant line), but also formal and applied conceptions (rate of change). 
With the derivative, ideas dominated referring to functions or calculations 
as opposed to local geometrical conceptions as the slope of the tangent 
line. 

In the case of the applied course A2 the students" conceptions of the 
difference quotient fell into two groups, namely local geometrical concepts 
(slope of the secant line) and applied concepts (rate of change). As regards 
the derivative, all students had local geometrical ideas as the slope at a 
point 

In the case of the geometric courses G l and G2, the differences - .\tie 

obvious, too: from the difference quotient many students of the course G l 
had local geometrical conceptions as slope of the secant line or formal 
ideas, along with the derivative dominated local geometrical ideas as the 
slope at a point. 

Compared with this, most students of the course G2 had only local 
geometrical ideas of the difference quotient. Referring to the derivative 
they had global ideas, that means they mainly saw the derivative is a 
function, as a means to examine functions and sketch graphs. 

The geometrical illustrations of difference quotient and derivative 
(question 3) confirm the differences in the students ' conceptions. These 
differences had severe consequences for the students ' work in the applied 
tasks. 

The students ' abilities to define mathematically a real world situation 
with difference quotient and derivative were tested with questions 4 and 5. 
The following results were obtained in the more demanding task to 
construct a real world context on their own. in which difference quotient 
and derivative were relevant and to define mathematically this real world 
context with these two concepts. 

Table 1. Answers to quest ion 4 

A l A2 G l G 2 

Sta tement of a real world example 8 8 % 57% 59% 19% 
Correct precision of the real world example r.7% 50% 30% 0% 

Most students of the applied course A l were able to specify a real world 
example and to define correctly these examples with the difference 
quotient and the derivative. Compared with this, the students of the 
geometrical course G2 almost completely failed. Little more than half of 
the students of courses A2 and G1 were able to assign real world examples 
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The results of the easier task to define mathematically a given simplified 
real world situation differed widely, too. 

Table 2. Answers to question 5 

A l A 2 G l G 2 

Correct description (formal) 82% 0% 59% 13% 
Correct description (only verbal) 6% 6 7 % 6% 6% 
False description 6% 20% 35% 3 1 % 
No answer 6% 1?% 0% 50% 

Nearly all students of the course Al mathematically defined the 
situation in a correct manner, just as two-thirds of the students of the 
courses A2 and G2. Only one-fifth of the students of course G2 were able 
to do this. 

It is possible to recognise misconceptions in the students' answers: some 
typical examples were as follows. 

The students of the course A2 connected with the derivative a general 
formula for the calculation of the slope, a certain kind of mean calculation, 
wherefore they defined the mean incline of atmospheric pressure with the 
derivative. For them the difference quotient made specific statements 
about a piece of the function, therefore they defined the local incline of 
atmospheric pressure with the difference quotient. 

With the help of the difference quotient one calculates the slope of a 
function within a certain straight line, y0 toyj. The derivative specifies 
the slope of the function in its entirety. As for example the quadrat ic 
function hasn't the same slope at each point of the function, the slope, 
which is assigned by the derivative, is denoted with mean incline of 
atmospheric pressure . . . The difference quotient refers to a certain 
piece of the function and therefore it is more precisely aligned with this 
part of the function; accordingly it describes the local incline of 
atmospheric pressure. (Rough translation.) 

Many students of the course G l could not imagine that it was possible to 
define mathematically situations like incline of atmospheric pressure. Their 
answers seemed lo be guessed from the description of the situation. 

Local incline of atmospheric pressure is the slope at a certain point of the 
function. Mean incline of atmospheric pressure is the derivative, which 
describes the slope at each point of the function. (Rough translation.) 

The students of the course G2 had no idea how to describe situations like 
this in a mathematically precise way. The following statement shows this. 

Mean incline of atmospheric pressure is the function, local incline of 
atmospheric pressure is the first derivative. 
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The students ' abilities to interpret the difference quotient and the 
derivative in a real world situation were tested with questions 6 - 8 . The 
results of the question which referred to an everyday situation, and the 
question which dealt with a scientific situation, differed widely. First to the 
results of the interpretation of the difference quotient and the derivative in 
an everyday situation. 

Table 3. Answers to quest ion 7 

A l A2 G l G 2 

Both interpretat ions correct 50% 40% 59% 13% 
Only interpretat ions of difference 

quot ient correct 3 8 % 27% 30% 0% 
False interpretat ions 6% 14% 12% 44% 
No answer 6% 20% 0% 44% 

Hardly any differences between the courses A l , A2 and G l existed, only 
the students of the course G2 again failed completely. The answers globally 
show that many students of the courses A l , A2 and G l were able to 
interpret the difference quotient and the derivative in an everyday 
situation. However, a detailed analysis showed that many students had 
difficulty only with the interpretation of the derivative, not with the 
interpretation of the difference quotient. In the following I will illustrate 
some problems with typical answers of the students. For example, some 
students of the courses A l and G1 had problems with the interpretation of 
the 'h ' , which becomes smaller and smaller. A typical statement of a 
student from course A l : 

Difference quotient: 'average petrol consumption' ; derivative: 'average 
petrol consumption referring to a certain distance' 

The difficulty of the students of the course A2 was on a completely 
different level, they were strongly influenced by the terminology used in 
the previous instruction. So. many students connected a general formula 
about petrol consumption on the whole distance with the difference 
quotient , whereas the derivative not only describes the petrol consumption 
at a certain point but also the general petrol consumption. 

Difference quotient: 'Here the petrol spent f(s) per distances is given in 
general ' ; derivative: "Here a description of an approaching point (limits) 
is carried out, made at an optional point. 1 can not only determine the 
general petrol consumption but also the petrol consumption at a certain 
point. ' (Rough translation.) 

In the ensuing discussion some students mentioned that they had 
remembered the calculation of the petrol consumption, common in 
everyday life. 

In the case of the interpretation of the difference quotient and the 
derivative in a scientific situation, in which the students were lacking such 
previous experiences, the results of all courses became distinctly worse 
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Table 4. Answers to question 8 

A l A 2 G l G 2 

Correct interpretations 3 1 % 0% 6% 0% 
Partially correct interpretations 19% 3 3 % 18% 6% 
False interpretations 44% 27% 70% 19% 
No answer 6% 40% 6% 7 5 % 

With one slight exception only, students of the course A l gave correct 
interpretations of the difference quotient and the derivative as 'average 
density of the particles' and 'local density of the particles', that is about a 
third of the course. Half of the answers were false, but it was not possible to 
recognise prevailing misconceptions. Nevertheless a third of the s tudents of 
the course A 2 gave partially correct interpretations. Again the s tudents ' 
problems were caused by the terminology used in previous instruction, 
which led to a confusion about general, global versus specific, local 
statements. One typical answer: 

Dilterence quotient: Here a concrete volume is calculated that is in 
principle only the general value of the volume, that means we calculate 
an average value. . .', derivative: 'Here we carry out a description of 
changes with the help of a complete description of all relations in order 
to come to assertions about a general relationship between x and the 
number of the particles, that means we take a general value and carry 
out a discussion of the limit of the function'. (Rough interpretation.) 

In the course Gl more than two-thirds of the answers were false, for 
example some students gave interpretations related to the time: 

Difference quotient: 'Average number of particles per volume ' ; 
derivative: 'number of particles per volume at a certain moment ' . 

Other statements of students of the course G l only showed that the 
students simply did not know how to interpret such situations, because of 
lacking experiences from the preceding instruction or other teaching 
subjects, for example: Difference quotient: 'volume of the vessel"; 
derivative: 'number of particles'. 

The results of another task (question 6) point to great differences among 
the different courses in the students' abilities to apply mathematics. In this 
task the students should reconstruct the real world meaning of the 
underlying function from the given meaning of the difference quotient and 
the derivative, as it were the inversion of the previous two tasks. The 
following results were attained. 

Table 5. Answers to question 6 

A l A 2 G l G 2 

Correct description 82% 40% 24% 6% 
False description 18% 47% 7 1 % 5 7 % 
No answer O 13% 6% 3 8 % 
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Nearly all students of the course A l were able to specify the real world 
meaning of x and /(.r) . In the other applied course A 2 nearly half of the 
students succeeded in giving the correct answer. In the geometrically 
oriented course G1 only a quarter of the students gave correct descriptions, 
the course G2 failed again. 

4. INTERPRETATION OF THE RESULTS 

In my opinion the result of the research allow the following theses. 

Thesis 1 
It is possible extensively to reach the following abilities, central for 
modelling in calculus instruction, along with an applied introduction of 
concepts using adequate and favourable methods: 
— the ability to define mathematically a real world situation with 

difference quotient and derivative 
— the ability to interpret the difference quotient and the derivative ; n n 

real world situation. 

In my opinion the results of the applied course A l make it possible to 
establish this thesis. The results of the other applied course A2 are worse 
throughout. This shows that the kind of methodical procedure, the 
terminology used play an important part. I will refer to this in thesis 3. 

Thesis 2 
In the case of a pure mathematical introduction of difference quotient and 
derivative the students have great difficulty using these concepts in real 
world situations, not only to define mathematically real world situations, 
but also to interpret these concepts in real world situations. A considerable 
group of students is able to apply these concepts in real world situations as 
"transfer'. However, they succeed to a smaller extent than the students who 
had learned the concept of the difference quotient and the derivative 
application-oriented. 

This thesis is based on a comparison of the results in tasks 4 - 8 of the 
applied course A l with the results of the geometrically oriented courses 
G l and G2. The course A l reached altogether better results than the two 
other courses, whereby the differences between the two geometrically 
oriented courses G l and G 2 were considerable. 

Thesis 3 
The ability to define mathematically a real world situation with the 
difference quotient and the derivative and to interpret these concepts in 
real world situations, which are central for modelling in calculus 
instruction, are influenced not only by the method of introducing these 
concepts—that means applied versus mathematical—but also by the 
method. 

— In connection with an applied introduction of difference quotient and 
derivative, obstacles exist for the development of such abilities, such as 
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extreme differences between an applied introduction and the 
mathematical continuation, a missing phase of real world 
interpretations after the introduction of the concepts, or a strong 
emphasis on discrete processes of change in the introduction phase of 
the concepts. 

— Along with the mathematical introduction of the difference quotient 
and the derivative, methods exist which hinder real world 
interpretations and methods, that do not obstruct such interpretations. 
Local geometrical conceptions of the difference quotient and the 
derivative as slope of the secant and the tangent line do not promote 
such real world interpretations without extra effort, hut they do not 
obstruct such interpretations. 

Compared with this a strong emphasis on the examination of 
functions and on global aspects, occurring very often in connection with 
the introduction of the derivative over graphical differentiations, leads 
many students to conceptions which obstruct such real world 
interpretations. 

The first part of the thesis is based on the difficulty of the applied course 
A2 with the tasks to define mathematically a real world situation and to 
interpret the difference quotient and the derivative in a real world context. 
These problems were really significant and more serious than the problems 
of the applied course A l . Especially the terminology used of the zero 
sequence in the introduction of the derivative, strictly separated from the 
concept of the rate of change dominating in the introduction phase, led to 
a confusion of local and global aspects and further to a confusion of 
average and local rates of change. 

The second part of the thesis relies on the results of the course G 1 , which 
were not bad. The students of this course had local geometrical 
conceptions of the difference quotient and the derivative, which obviously 
did not obstruct interpretations of the difference quotient and the 
derivative as average and local rate of change. The global conceptions of 
the students of the course G2 from the derivative as a function, as a means 
to examine functions and sketch graphs, turned out to be a serious obstacle 
for local real world applications of the difference quotient and the 
derivative. 

These results point to the central role of the method of introducing 
mathematical concepts. It strongly influences which mathematical 
concepts and methods can be used in modelling examples. The 
introduction of mathematical concepts and methods in real world 
situations and the practice of their use in a real world context can definitely 
promote and facilitate their application in modelling examples. Treilibs 
drew similar conclusions of his empirical research and as early as 1980 
formulated these at 1CMF. 4 in Berkeley: 

Explicit steps must be taken to develop modelling ability; it is inefficient 
to merely present large numbers of standard models and hope that the 
students will learn modelling skills 'by example'. Such steps should 
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i n c l u d e the practice of the component skills o l modelling . . .. and the 
development of an awareness of the need for, and nature of, validation 
procedures. (T re i l i h s I<1R3. p. 298) 

In my opinion the introduction of concepts can already promote modelling 
abilities, but an akward, not appropriate, introduction can obstruct such 
abilities. Again these results refer to the central role of the teacher, who 
can definitely influence the development of modelling abilities with an 
adequate methodical procedure. 
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SUMMARY 

This chapter discusses assessment criteria and methods that have evolved 
from research in modelling processes and other considerations based on 
the teaching experiences of the authors. The two main forms of assessment 
which are considered are written examinations (formal fixed-time) and 
course-work assignments (taking from 12 to 50 hours to complete) . In 
general agreement with others, written examinations are considered to be a 
most inappropriate method of assessment; however, with large classes or 
for other reasons, this method has been used and the 
advantages/disadvantages are discussed with illustrative examples. 
Course-work assignments, on the other hand, are considered to be a most 
appropriate form of assessment and an indication of the standards reached 
by teachers in an MSc course in Mathematical Education as well as some 
undergraduate work is provided. 

Criteria for guiding assessment, no matter what the assessment mode , are 
examined. Briefly, the criteria amount to suggestions for credit to be given 
for the following: initial interpretation of problem, generation of relation
ships consistent with initial objectives, technical competence in 
mathematics, rational simplifications based on assumptions, recognition of 
a solution, conclusions, and overall presentation. The way in which such a 
set of criteria is consistent with current understanding of modelling 
processes is also examined. 

Finally, the arguments for and against formal marking rather than 
impression marking are studied and illustrated in a selection of 
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assessments. It is shown that, in common with the finding, u i diners, formal 
markers often adjust their marks under some headings in order to 
compensate for their overall impression of a piece of work. 

1. INTRODUCTION 

Most authors agree that a formal written examination is the most 
inappropriate method of assessment in mathematical modelling. 
Occasionally it has been used, see for instance the comments of Burley and 
Trowbridge (1984), in view of the large number (fifty or sixty) of students 
involved. With large numbers of students, staff resources usually do not 
stretch to the much more time-consuming process of reading and marking 
the more appropriate project type of assignment (course-work). Modelling 
has also been assessed by written examination in the second level course, 
TM 281 'Modelling by Mathematics ' which was introduced by the Open 
University in 1977. When the MSc in Mathematical Education ( C N A A ) 
was introduced at the Polytechnic of the South Bank, assessment was by 
written examination and by course-work (Oke, 1980; 1984a). In the latter 
case, the reason for the inclusion of a written examination paper was to 
at tempt to balance the assessment modes in what was a completely new 
experience (running an MSc Math. Ed.) both for South Bank and for the 
C N A A . 

The marking of either written examination papers or ot course-work 
type assignments is difficult because of the uncertainty of what criteria to 
use. Such criteria depend largely on one's understanding of the modelling 
process and on what students find most difficult in this process. Several 
authors, for example Treilibs (1979) , McLone (1979), Burkhardt (1979, 
1981), James & Wilson (1983) , Berry & Le Masurier (1984) , and others, 
have reported on what appears to be a common set of students" difficulties, 
namely: 

General lack of confidence. 
Loathness to simplify. 
Lack of skills in approximating and estimating. 
Inability to generate mathematical relationships. 
Knowing when to stop. 
Weakness in report writing. 

Berry and O'Shea (1982) report on their experiences of assessing the 
mathematical modelling project set in the Open University's MST 204 
unit. This unit was presented to students for the first time in 1982. and it is 
the results for that year which are analysed by Berry & O'Shea, with 
further discussion presented by Berry & Le Masurier (1984). A formal 
marking scheme is used, and out of a possible total of 100, 35 possible 
marks are awarded to 'initial model ' and 'formulation' ( taken as a 
combination). Relatively few marks (10) are given to data ' , since the 
experiences of the OU with other projects has shown ' that students in 
difficulty may attempt to accumulate marks by amassing vast amounts of 
data ' . A relatively high mark (20) is given to 'revisions to the model ' , thus 
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encouraging students to be critical of their first attempts and to make some 
improvements. Berry & O'Shea report favourably on the consistency of 
project markers, and most interestingly Berry & Le Masurier report that 
marks formed by overall impression were very close most of the time to 
those marks obtained by following the formal marking scheme. 

The articles by Berry & O'Shea (1982) and by Berry & Le Masurier 
(1984) are amongst the most detailed recently published on assessment 
procedures in modelling. Their marking scheme represents an additive one, 
like most marking schemes, but Hall (1984) suggests that a product scheme 
of marking might be more realistic and also provide a more uniform 
method of marking different individual projects (course-works). Hall 
argues that no credit should be given if a vital component of modelling 
('content*, 'presentation", or 'drive') is absent or is very badly done. So, 
Hall is definitely recommending strict standards according to a formal 
marking scheme. He further recommends that 'double-blind' marking is 
used (two markers neither of whom has seen the other's marks, mark each 
project). Several authors would seriously question the advocacy of formal 
marking, and would rather argue for impression marking; for example, 
Burghes & Huntley (1982) recommend marking by interview' where 
groups of students discuss their course-work report with a lecturer and a 
mark is jointly agreed. As mentioned earlier. Berry & Le Masurier found 
that impression marking has led to close agreement with marks awarded 
according to a formal marking scheme. 

Subsequent sections tn this chapter discuss the points mentioned above 
in more detail and also show how the work on formulation-solution 
processes (in the next chapter) has an important bearing on assessment in 
mathematical modelling. 

2. IMPLICATIONS OF FORMULATION-SOLUTION PROCESSES 
FOR ASSESSMENT 

Associated with any assessment form are the issues of formal and informal 
grading (the latter is sometimes referred to as impression marking). As 
discussed in Section 1, there are arguments for and against each method of 
grading. These issues are taken up again in the subsequent sections of this 
chapter, but suffice it to say at this juncture that although there are strong 
arguments in favour of informal grading (even for externally assessed 
assignments), a formal marking scheme which awards marks for each of 
well-defined attributes or sections of a student's modelling attempt may be 
commended for the lecturer inexperienced in the teaching and assessment 
of mathematical modelling. 

Some key considerations which guide assessment, no matter in which 
form or whether a formal marking scheme is used, are indicated by the 
findings of the next chapter on formulation-solution processes. 

As pointed out in the next chapter, it is the relationship level graph 
(RLG) rather than the concept matrix (CM) that has provided the deeper 
insights into modelling processes. Consequently, the results of analysing 
formulation-solution processes using RLG are the most relevant in 
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providing guidance for assessment. The R L G has shown that l u u n u i a u u n 

and solution are intimately interwoven (carrying out some mathematics 
prompts the need for further understanding of the problem—generat ion of 
further level 0 relationships). So, formulation and solution may best be 
marked together. Analysis, using RLG, of students ' at tempts at modelling 
has shown that although ' interpretation' and 'validation' are often an 
integral part of ' formulation-solution' , they can be more naturally 
separated out for marking. The RLG has also shown, through 
demonstrating relationship generation and the possible evolution of 
sub-problems, that model development and improvement take place 
naturally; consequently, it is unreasonable to insist on students in all cases 
to make a separate development of models in a hierarchical sense. Both the 
CM and RLG show that simplifying assumptions, relationships, variables 
and constants are generated naturally with the development of a model(s), 
and so it is artificial to ask for a list of such items in the initial part of a 
report—such items could only be listed with hindsight and out of their 
natural context. The latter point is not encouraging lack of clarity; on the 
contrary, students should be encouraged to identify most clearly any 
assumptions and variables they create as they develop their model(s). 

The above points may be summarised as follows. 

(1) Formulation and solution are intimately interwoven, even in 'polished' 
model developments, and so are best treated as a single entity. 

(2) I n t e r p r e t a t i o n and v a l i d a t i o n can be more easily separated out for 
marking. A warning must be issued even here, though, since these 
latter activities are a vital part of the modelling process and are 
themselves often integrated with formulation-solution activities 

(3) Improvement of the model can take place in natural development and 
so it is unreasonable to insist on separate treatment. 

(4) Sub-problems are often only identified with hindsight, consequently it 
is unreasonable to ask for separate treatment of each. 

(5) Simplifying assumptions, relationships, variables and constants are 
generated naturally with model development. Consequently it is 
artificial to ask (or a list of such items at the outset. 

Additional considerations based on the authors" experience in assessment 
which incorporate points ( l ) - ( 5 ) above are the following. 
Credit to be given for: 

(A) Interpretation of problem, including clear statements of initial 
objectives 

(B) Generat ion of relationships consistent with inital objectives 
(C) Technical competence in mathematics in generating additional 

relationships 
(D) Rational simplifications making clear any assumptions made 
(E) Recognition of a solution—ability to interpret and validate. Checking 

for logical errors. 
(F) Conclusions and general discussion—awareness of strengths and 

weaknesses of model development, suggestions for further work 
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(G) Overall presentation—ability to communicate clearly in written form; 
clear diagrams and sketches 

In the subsequent sections the fundamental points made earlier will be 
embodied in discussions on assessment of examination papers and of 
course-work assignments. Additional considerations specific to a group of 
students as well as the form of assessment will also be identified, 

3. WRITTEN EXAMINATIONS 

This section refers to written examinations in mathematical modelling and, 
in particular, illustrates with examples of questions set in the MSc Math. Ed. 
final year (second year) assessment. 

The MSc Math. Ed., the only course of its kind in the public sector of 
higher education, started running in 1977. This part-time course is 
intended mainly for secondary school teachers and college of further 
education lecturers who have a degree or equivalent qualification in 
mathematics. Details may be found in Oke (1980, 1984a). 

The examination paper, which is taken at the end of year 2, is of three 
hours duration. The paper consists of two sections. Three questions are to 
be attempted (1 hour per question), with one question only selected from 
Section A. 

Section A (Seen one week before examination) 
Three questions, each stating a practical problem, to be modelled from 
scratch. Only initial approaches are expected, but they must include some 
mathematics and interpretation. One question is based on a problem in the 
social and organisational area, one on physics/engineering area, and one on 
life sciences/biology. 

Example (physics/engineering area) 
Modern office blocks, particularly of the high rise type, have large glazed 
areas on the outside to permit entry of as much natural light as possible. By 
concentrating on the forces involved on an individual glass unit or pane , try 
to identify some key design features. Is there an optimum pane size, and if 
so, does double glazing affect this? In your development, consider simple 
models and make clear any assumptions you feel are necessary. 

(June 1983 paper) 

Section B (Unseen) 
Approximately five or six questions, each based on general modelling 
and/or pedagogic issues. Essay type answers expected. 

Example 
Make out a case for teaching mathematical modelling, indicating clearly 
the level and background of the students involved. Refer to relevant 
articles as far as possible. 

(June 1983 paper) 
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In order to provide an indication of the extent of the initial modelling 
development that is expected in response to a Section A type question, the 
following outlines a possible approach to the office block glazing problem 
above: 

Office block glazing (Section A, June 1983) 
Outline notes on possible approach. 

Consider single-glazing. Size of glass-pane is limited by risk of glass 
breakage; pane needs to be as large as possible to allow maximum amount 
of light entry—too many panes over a large area will involve loss of light 
entry due to area of supporting frames. Consequently, there appears to be 
an optimum size for a given pane. 

Key methods by which pane is assumed to break; 

(a) Wind causing flexure. 
(b) By crushing under own weight. 
(c) Thermal cracking—pane not allowed to expand (or contract) in frame. 

With a well-designed frame, it can be assumed that (c) will not occur. 
Before (b) takes place, whole side of high-rise office block would consist of 
single pane of glass! Wind forces causing flexure, as in (a) seem to be the 
single most important cause of breakage (ignoring accidents). 

Assuming frame is rigid on all four sides of pane, then problem reduces 
to 2-D stress type (assuming small displacements). If wind speed is v, 
d /d r (wv) = ray = (p.4v)v = pA\: can be assumed from Newton's second 
law to be force (normal on pane of area A), (m = pA\ is flow-rate of wind, 
p is density of air). This approach would provide simplified boundary 
conditions. By solving the biharmonic stress equation, maximum stresses 
can be found (near centre of pane) . The design would involve knowledge 
of maximum possible wind speed v (over the year, in a given location), so 
that maximum stress is much less (50% less?) than breaking (yield?) stress 
of glass involved. Hence size of pane. For double glazing, air is trapped 
between two panes of glass and would be partlv compressed—this might 

wind 

glass pane s t ressed inwards 

supporting '••?>!" e 

I ig. I. H e x u u J<;. to wind forces. 
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Section A (one question) and Section B (two questions) are allocated 
equal marks by informal (impression) marking- It was decided by the 
marking team at South Bank that formal marking was inappropriate in 
view of the possibly wide variation in approaches that could be adopted in 
tackling any one question. For example, the outline approach provided 

•rigid support 

wind 

Hg. 2. Crude model. 

strengthen structure and hence permit a larger unit ioi given wind speed; 
stressing of inner pane would also have to be taken into account. 

So far. the mathematics that would be involved would be fairly 
complicated and beyond expectation in the time allowed (one week to 
prepare modelling approach, and one hour in the examination in which to 
write out the development). So, it is wise to consider an even cruder 
approach in order to get some upper-bound for stress at the middle of the 
pane. 

Crude model 
Consider a single-pane of glass, rigidly supported along upper and lower 
edges only, then problem reduces to one in ID (see Fig. 2). 

Maximum stress (at mid-point) would be greater than for 2-D model and 
hence would be an upper-bound. Solution follows from elementary beam 
theory, using resultant of air force and weight for external loading. Full 
credit would be given for a comparable development. 

Note II an approach along ihe lines of the above development were followed, ihen some 
attempt at solving the beam problem identjlied above would be expected. 
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above (Oke 's) represents mainly initial formulation, with reasons, of a 
crude model ; little mathematics is used or intended (elementary beam 
theory and solution of a differential equation is the most expected). 
Consequently most credit, for a comparable development, would have to 
be given to initial arguments of the type used above in creating a specific 
problem to be solved. On the other hand, a student may decide (this 
actually happened in one case in 1983) that only the briefest (half-page) 
discussion would suffice, and then proceed with a solution with some 
numerical values (from a textbook) being inserted. Credit would, in the 
latter case, concentrate on solution and interpretation. As a measure of the 
standards set for the course, the approach which has been outlined 
together with some solution and interpretation of the elemental beam 
would attract full marks; without the latter solution, a mark of 
two-thirds of the total would be awarded. Section B questions are 
marked as essays, where content, presentation, relevance and clarity in 
communication are given credit. 

Clearly, it is not reasonable to expect an extensive modelling 
development for a Section A question. In fact, all that is insisted upon are 
points A, B, D and G with some attention paid to the remaining from the 
credit list provided in Section 2. 

Examination papers for the years 1979-1980 had the same structure 
except that Section A was unseen. The poor standards achieved in 
Section A persuaded the teaching team to adopt a ' seen ' approach from 
1981 onwards, which resulted in considerable improvements in student 
performance. However, in view of the realistic expectation of few 
modelling activities being carried out in the time available and under the 
stress conditions of a formal fixed-time examination, it has now been 
decided to discontinue this mode of assessment from 1985 onwards. The 
reason for the inclusion of a written examination paper in the first place 
was an attempt to balance the assessment modes in what was a completely 
new experience (running an MSc Math. Ed.) both for the South Bank 
Polytechnic and for the C N A A . 

Mathematical modelling is also assessed by course-work on the MSc and 
this mode will be the main mode of assessment in 1985 and subsequent 
years. The next section discusses course-work assignments, with 
illustrations of the assignments involved with the MSc and BSc Applied 
Physics courses at South Bank. 

4. COURSE-WORK ASSIGNMENTS 

4.1 M.Sc Math. Ed. 
In the case of M.Sc Math. Ed., one course-work assignment is set towards 
the end of year 1. Originally, two assignments were set, but largely due to a 
policy of reducing the overall number of assessments on the course in all 
subjects, a concession had to be made in mathematical modelling. 

This assignment consists of each student (teacher) finding their own 
problem, in any area they wish, and developing a mathematical model 
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relating to this problem. Teachers are expected to define the learning aims 
appropriate to a level of student with which they are familiar, and to 
provide self-assessment questions for their students—these questions may 
test understanding of the developed model as well as test ability to extend 
or model a similar situation. Originally this course-work was assessed 
according to the following formal marking scheme. 

(1) Statement of problem, to include how the problem was 
identified in the first place. 10 

(2) Learning aims (broad and specific teaching aims, including 
level of students for whom material might be wholly or 
partially appropriate) 10 

(3) Construction of model j ^ 
(4) Analysis of model (including validation) j 
(5) Discussion (general and conclusions) 20 
(6) Self-assessment question(s) (for intended students) 10 

Total 700 

Assessments (1), (3), (4) and (5) would be appropriate to any modelling 
exercise, whereas (2) and (6) are specifically relevant to the teachers on the 
MSc course. Note that whether formal marking is used or informal 
(impression) marking is used, the above serves as a useful check-list. Note 
also, that in view of the comments made in Section 2, a further break-down 
of modelling activities is avoided although points A - G do provide an 
additional overall guide. As the teaching team gained experience in 
marking course-works, impression marking has taken over. This approach 
is further supported since teachers have considerable choice in how they 
present their work, and because of the completely free choice they have in 
the problem (which they find) to model. 

The whole matter of assessment, regarding both examination papers and 
course-work assignments, has been discussed at length on the Advisory 
Committee for Mathematical Education (South Bank), chaired by 
Professor A. C. Bajpai. The committee agreed that mathematical 
modelling would be more appropriately assessed by course-work rather 
than by formal fixed-time examination. The external examiner* of the MSc 
course have agreed that whilst a formal marking scheme for course-work 
can be of value, the most important criterion for judging a particular piece 
of work is based on knowledge of standards that have been developed as a 
result of running the course over several years. These 's tandards ' are 
established by 'impression' marking whereby the internal examiner, in final 
concurrence with the external examiner(s), arrives at a final mark (grade) 
by appraising the overall quality of a piece of course-work using points 
( A ) - ( G ) as guidance. 

Teachers are asked to Imd their own problem and to develop a 
modelling approach comparable in extent to some samples provided in the 
earlier part of the course. In other words, although a thoroughly competent 
development is expected, any attempts at elaborate mathematics and/or 
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at tempts at introducing an abundance of detail into an analysis is 
discouraged. Credit is given for a development that is consistent with the 
learning aims that must be identified at the beginning of each report . On 
the whole, teachers produce work within the reasonable perspectives 
outlined here. However, there are one or two exceptions where quite 
voluminous and over-ambitious reports have been presented; m the latter 
cases, excessive enthusiasm had led to attempts to study a problem in a 
manner which is much more appropriate to a team of professional 
modellers with much more time available. In the other extreme, some 
reports contain a large amount of descriptive material with littie 
mathematical content, and consequently the benefits of modelling are 
barely achieved. 

It is very important for students in their development of mathematical 
modelling skills to receive comments on their assessed work in order that 
they may improve on their weaknesses. A balance between encouragement 
and criticism is required, especially with part-time students where there is 
inevitably less contact between lecturing staff and students (teachers) than 
is the case with full-time students. 

4.2 BSc Applied Physics 
In contrast to the extensive course-work that is expected of the MSc Math. 
Ed. teachers, taking an average of 52 hours and where a problem has first to 
be found, course-work on mathematical modelling takes approximately 
12 -15 hours in the BSc Applied Physics. A problem, or set of problems, 
is presented to the physicists in the form of a problem statement. 

Mathematical modelling was first introduced on the BSc Appd Physics 
degree four years ago. At present it is taken only in the second year of the 
course, but it is planned to include modelling in the first year as well from 
1985 onwards. The subject forms a compulsory part of the curriculum and 
it is assessed; marks contribute towards the final part I of the degree 

The course-work assignment consists of a practical problem that is 
presented to the class which is then split into groups; the groups then work 
for two weeks (3 hours per week) as part of their normal course where 
contact may be made with a lecturer. At the end of the two-week period, 
students have an additional week in which to write up group reports in their 
own time. 

In order to illustrate the assessment of this type of assignment, the 
groups referred to above who worked on the record player problem (see 
Okc (1^81) for further details and also Sections 3 and 4 of the next 
chapter) will now be considered. A formal marking scheme was adhered to 
on this occasion as follows. 

Group report to be in following format 

( [ ) Problem statement 
(2) Report on class discussion (initial purifications oi problem with a 

lecturer). 
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(3) Log consisting of minute by minute group development of model(s). 
This must be an honest and accurate record of what actually happened 

(4) Report consisting of model(s) with interpretation of results based on 
(3 )above 

(5) Conclusions 
(6) References if any 

Marks awarded as follows: 

% 

Overall presentation 20 
Log (Section 3 above) 30 
Main report (Section 4 above) 40 
Conclusions (Section 5 above) 10 

Total TOO 

The decision to assess each group, rather than individuals, seemed to be a 
natural one since groups worked together as teams. The disadvantage of 
assessing in this manner, however, is that the less able or less hard working 
get the same credit as the stronger members of their group. Little discord 
was observed on the latter point, although each group did tend to produce 
a leader. Most reports show evidence of a genuinely co-operative effort, at 
least to the extent of sharing the writing of sections amongst group 
members. 

It was decided to assess according to a formal marking scheme by 
triple-blind marking; one marker was one of the authors (Oke) , another 
was a moderately experienced lecturer in modelling (and its assessment), 
and the third marker was relatively inexperienced in modelling. The final 
mark awarded was an average of the three markers. The three markers 
independently observed the groups working in class time and made notes. 
The marks produced are shown in Table 1. Also shown in Table 1 is the 
maximum relative discrepancy (MRD) between markers, where 

MRD = numerical value of maximum difference between markers 
average mark 

(For example, marks for presentation for group 1 are respectively 13, 15, 
14. Hence M R D = 2/14 = 0.4 (approx.)). 

The table shows no consistent difference between the total marks given 
in any group across the groups, in fact there is surprisingly close agreement. 
However, there are more significant (although still not consistent) 
differences in the marks given to each section as shown by the higher M R D 
values. The most striking differences occur for marks awarded to the 
conclusions section; these differences (highest M R D is for group 3) will 
not contribute much to the total marks, however, since this section can at 
most contribute 10 out of 100 in weighting. No doubt the overall close 
agreement between the markers can be explained by the fact that all three 
were closely involved with the observation of the groups. 
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Table 1. BSc 2 Applied Physics course-work group marks; minimudiiun <>l sound 
distortion in a record player 

G r o u p 1 G r o u p 2 G r o u p 3 Group4 

Presentat ion 
(max. 20) 

13 
15 (0.14) 
14 

11 
13 ( D P ) 
12 

11 
16 ; v I 
16 

16 
12 (0.28) 
15 

Log 
(max. 30) 

20 
18 ( U . U ) 
19 

I'. 
18 (0.17) 
19 

19 
20 (0.05) 
20 

23 
21 (U.IW) 
21 

Repor t 
(max . 40) 

27 
22 (0 .20) 
27 

16 
18 (0.12) 
18 

24 
24 (0.08) 
26 

35 
35 (0.15) 
30 

Conclusions 
(max. 10) 

5 
8 (0.45) 
7 

4 
5 (0.40) 
6 

6 
3 (0.60) 
6 

3 
4 fO 50) 

Total 65 
63 (0.06) 
67 

47 
54 (0 .15) 
55 

60 
63 (0.13) 
68 

77 
72 (0.08) 
71 

Average total 6 5 % 52% 64% 74% 

First number in each box: Oke mark. 
Second number in each box: moderately experienced marker. 
Third number in each box: relatively inexperienced marker. 
Number in brackets in each box: maximum relative discrepancy between markers 

Note that more pronounced differences in marking might have been 
predicted in view of there being no break-down in marks for the main 
report section, where the model(s) development takes place. That such 
close agreement amongst the markers (highest M R D is 0.20 for group 1) 
has been achieved is another instance of support for informal (impression) 
marking. 

5. CONCLUSIONS 

This chapter covers general points for guidance in the assessment of 
mathematical modelling assignments. The two main forms of assignment 
considered are written examinations and course-work. Illustrations of the 
points have been made by referring to the assessment methods used in the 
MSc Math. Ed. and BSc Appd Physics courses offered at the South Bank 
Polytechnic. 

The overall implications of the chapter on formulation-solution 
processes for assessment as well as the presentation of a credit guidance list 
are covered in Section 2. 

A subset of modelling activities is all that can be expected in a formal 
written examination and consequently this form of assessment is not 
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n\>>mmen,h'>l. The limited scope for assessing modelling in this manner is 
illustrated in the case of the MSc Math. Ed. in Section 3. 

By contrast, the less stressful mode of course-work, where much more 
time is made available, is considered to be a most appropriate form for 
assessment. Examples of marking schemes used in assessing modelling 
assignments in the MSc Math. Ed. and BSc Appd Physics courses are 
provided in Section 4. Irrespective of the marking schemes considered, all 
points in Section 2 are expected to be covered for full credit to be given. A 
case for informal (impression) marking is made, where the assessor has an 
eye for attributes in the credit list appearing in some form or o ther in a 
course-work report. Formal marking schemes may best be used by 
inexperienced lecturers, although even then a large element of judgement 
is needed in attributing marks to any section. Close agreement is often 
achieved between several markers, even where a vaguely defined section is 
part of the marking scheme; this is illustrated in Section 4.2 in the marking 
of the record player problem. Such close agreement may well be due to 
lecturers (markers) being closely involved in observing students modelling 
a particular problem or may be due to lecturers working closely together as 
a team over several years (as in the case with the MSc Math. Ed. ) . 
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SUMMARY 

This chapter reports on research that has been carried out on the nature of 
the complex linkages between formulation and solution in mathematical 
modelling. The processes involved in modelling are usually portrayed in a 
flow-diagram, or similar representation, and imply a linear or linear with 
looping sequencing of stages. Only recently, drawing on the still developing 
work of systems analysis (in information processing), have nonlinear 
approaches been suggested, and then only in the very broadest of terms. In 
order to try to understand more fully the highly complex processes 
involved, two theoretical constructs have been devised: a concept matrix, 
and a relationship level graph. The chapter defines and illustrates the ideas 
involved, first in general terms and secondly in terms of the initial attempts 
at modelling a problem (on central-heating) from scratch. The analysis 
involved, together with results of students ' attempts at modelling a 
selection of problems, covers the following main points: concept matrix 
portrayal of characteristics— distribution of questions, assumptions, 
variables and constants, relationships between variables and constants; 
relationship level graph showing how formulation-solution takes 
place—basic (fundamental) relationship generation, forms of relationships, 
relationship 'level' as goal seeking, generation of variables and constants, 
and sub-problem emergence. 

Finally, the implications of this work for learning mathematical 
modelling skills are examined. The discussion concentrates on the 
development of learning heuristics which are intended to offer some 
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START ") 

Formulate 

Solve 

Interpret 

Validate 

Fig. 1. Processes of modelling: linear 

general guidance to students who are inexperienced in modelling. In the 
previous chapter the authors discuss a 'credit list' for use in assessment 
which is based on this work. 

1. INTRODUCTION 

It is now a common consensus that the formulation activities of 
mathematical modelling are the most difficult, Berry & O'Shea (1982) , 
Burghes and Huntley (1982), Burkhardt (1981), James & Wilson (1983) , 
Oke & Bajpai (1982). Penrose (1978), Treilibs (1979). Making sense of a 
practical problem and then making appropriate assumptions which lead to 
a set of tractable mathematical equations is a highly intuitive process. Since 
the start of a 'solution' to a problem will depend on the initial formulation, 
then it is the formulation -solution interface which is critical and poses the 
greatest challenge. The nature of the complex linkages between formulation 
and solution will be illustrated later in this chapter. 

A survey of the leading methodologies of modelling, see for example 
Bajpai era/ . (1982), Burkhardt (1981), Penrose (1978), Rivett (1980) , 
Treilibs (1979), shows that each represents the processes of modelling 
either as a linear sequence of activities, as shown in Fig. 1, or the processes 
are represented by a linear sequence with looping, as shown in Fig. 2. 
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START 

- Form ulate 

Solve 

Interpret 

Validate 

STOP 

Fig. 2. Processes of modelling: linear sequence «itti 

Both Figs 1 and 2 are simplifications of the actual methodologies and are 
intended to show overall features only. Burkhardt (1981) and Tretlibs 
(1979) have further analysed the formulation/solution activities, still based 
on a linear sequence (with looping). Treilibs has provided a further 
break-down of formulation and refers to his list as a set of skills: 

GV: generating variables 
S V : selecting variables 

Q: identifying the specific questions 
GR: generating relationships 
S R : selecting relationships 

Clements (1982) suggests an alternative to linear s^ ^m. n w n g m developing 
a framework of modelling processes. His development relates to the whole 
range of modelling activities, and draws its inspiration from the system 
movement of Checkland (1975). Clements quotes Checkland in referring 
to the distinctive, and nonlinear, features of the svstem approach: 

although the methodology is most easily described as a sequence of 
phases, it is not necessary to move from phase I to phase 7: what is 
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important is the content of the individual phases and the relationship 
between them. With that pattern established, the good systems thinker 
will use them in any order, will iterate frequently, and may well work 
simultaneously on more than one phase. (Our emphasis.) 

So, Checkland is discussing a much more complex linkage of phases (or 
stages) than is suggested in the usual descriptions of modelling processes. 
A broadly similar philosophy of approach is adopted in this chapter, where 
the essentially nonlinear and holistic nature of formulation-solution 
processes is demonstrated. 

In order to try to understand more fully the highly complex processes 
involved, two theoretical constructs have been devised, namely: 

a concept matrix (CM) 
a relationship level graph (RLG) 

The next section of the chapter defines and illustrates the nature of the 
ideas involved. A subsequent section reports on the results of using C M 
and RLG in the analysis of a selection of students ' at tempts at modelling. 
Finally, the implications of this work for learning mathematical modelling 
skills are examined. The discussion concentrates on the development of 
learning heuristics which are intended to offer some general guidance to 
students who are inexperienced in modelling. 

2. THE CONCEPT MATRIX AND RELATIONSHIP LEVEL GRAPH 

The concept matrix (CM) arises from analysis of modelling activities and is 
designed to show which features, or concepts, are used in different 
modelling stages. The matrix is also intended to provide information on the 
type of each concept. Since the features which arise in the development of 
a mathematical model are extremely varied, both in clarity and in 
complexity, it was considered inappropriate to attempt to develop a simple 
hierarchy of concepts, as discussed for example by Skemp (1979) . Initial 
attempts at classifying concepts by their relevance to the model were 
abandoned, since relevance only becomes clear in an a posteriori sense, 
that is after the model has been constructed and interpreted. 

The relationship level graph (RLG) is designed to show that 
mathematical solution and formulation are interwoven; additional ideas on 
the nature of the problem are generated as a mathematical solution is 
developed. Initial, and more or less obvious simple relationships are 
denoted by the level 0 (zero). These relationships, although usually 
mathematical in nature, require no mathematical solution techniques to 
derive or form; they are mathematical representations of one variable and 
its dependence on another or others, written down from an initial 
understanding of the problem. This initial understanding, which might well 
arise from inspired guessing, is often related to knowledge of a 
non-mathematical type, for example of physics, biology, or medicine, 
depending on the problem. Usually, one, two, or at most three level 0 
relationships need to be formed in order to be able to use mathematical 
techniques to form new relationships. 
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2.1 Concept Matrix (CM) 
As pointed out earlier, the purpose •••> > CM is to SHOVV me nature of the 
features or ideas involved, ranging from the initial thoughts on a problem to 
the final stages of solution and interpretation. All key considerations as 
a model is being developed are entered in the matrix, their position being 
determined by how specific they appear to be (specificity level) and by 
their complexity (cfwip/ejciiy level). These features or considerations are 
defined to be those statement, sketches and diagrams that consist of: 

Quest ions 
Assumptions 
Variables and constants 
Relationships between variables and constants 

The matrix finally devised is two-dimensional and is represented in Fig. 3. 

Specificity level 

A I G 

L 

Complexity M 

level 

H 

f-ii7. ^ Concept NIAINV ̂  [ 

Later sections show that initial formulation takes place by identifying 
features that tend to fit at or near the bottom right-hand corner of the 
matrix. Early, and subsequent, solution activities involve features tending 
towards the upper left-hand corner of the matrix. Global features tend to 
be those that are only broadly related to the problem in hand, whereas 
Atomic features are those in the most simple form, for example variables or 
constants, which are immediately amenable to mathematical treatment. A 
High complexity level denotes a feature, that may be highly specific to the 
problem, b u t which may not be easily symbolised or quantified 1 ow 
complexity level indicates fairly ea«v quantification. 

2.2 Relationship level graph (RLG) 
The purpose of a RLG, as mentioned earlier, is to show that mathematical 
solution and formulation are interwoven. Initial understanding of the 
problem leads to simple relationships based on knowledge, guessing or 
both of the background to the problem. These first relationships .ire 

A atomic 
I. intermediate 
G. global 

L low 
M: medium 
H: high 
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fig. 4. Relationship level graph (RLG). 

defined to be at level 0 (zero). The relationships deduced mathematically 
from level 0 are defined to be at level 1. A l t e i further mathematical 
solution work, and frequently the need for forming another level 0 
relationship, level 2 types may be derived, and so on. Many modelling 
problems carried out by undergraduates, and others, reach a very 
significant stage by the time levels 6 - 8 are reached. A typical RLG 
showing relationship levels and their generation is shown in Fig. 4. 

The number in each circle indicates the order in which each relationship 
is formed. A glance at Fig. 4 shows that there is no particular order in 
which relationships are formed, but that level numbers 0, 1, 2 , . . . indicate 
overall progress from starting a model (relationships 1, 2 is level 0) to 
finish (relationship 16 is level 5). Note also that not all relationships gener
ated are used in obtaining a final solution; for instance, relationships 10 
and 11, level 2, are not used in obtaining 16. One of the most important 
features illustrated in a RLG is that the mathematical solution stage is inti
mately interwoven with the formation stage; mathematical techniques 
are themselves used in the generation of relationships. Most of the reported 
literature emphasises the need to formulate (generate features and 
relationships) before attempting a mathematical solution, although 
Burkhardt (1981), Treilibs (1979), and others have made the point that 
movement between formulation and solution is highly oscillatory. The 
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R L G shows, however, that formulation-solution processes DIE more 
complicated than a linear sequence of steps followed by oscillations. The 
numerical ordering in the circles shows an almost random order of events 
in some circumstances, whilst the generation of some relationships, for 
example 15 in Fig. 4, take place simultaneously working at a variety of 
levels (5, level 2; 9 and 14, level 3). The latter phenomenon is a clear 
illustration of Checkland's reference to the distinctive and nonlinear 
nature of the systems approach. 

In the next section, in order to exemplify the characteristics discussed 
above, an analysis of one of the author 's (Oke's) at tempts at tackling a 
central-heating problem will be provided. 

3. ILLUSTRATION OF USES OF CM AND RLG 

The problem attempted is as follows. 

In using a central-heating system in a house, which is the best strategy for 
minimising heating costs. 

(a) Let house cool down naturally, central heating switched off when 
warmth not required. 

(b) Set thermostat to a certain . ,.due so that the house cools less when 
warmth is not required 

Strategy required for any 24-hour period in winter. 

Outline of modelling approach 
To simplify the problem it is assumed that there is only one warmth period, 
during the day, and that there is only one cooling period, during the night, 
throughout any 24-hour interval. Furthermore, a very rapid response is 
assumed, so that the instant the central-heating boiler lights up, the heat it 
generates is immediately imparted to the house via the radiators 
| The basic approach adopted was to consider Newton's law of cooling for 
the night and a net heat input equation (heat from system less heat loss = 
net heat gain) for heating up and maintaining a steady temperature. An 
expression for the difference in running costs between letting the house 
cool down naturally and keeping the night temperature above the 
minimum (which would have been achieved with natural cooling) is (he 
end point of the exercise. 

In order to illustrate as closely and as accurately as possible what 
happened in Oke 's first crude attempts (of 6 hours' duration: first stab 2 
hours, second stab 4 hours), the features considered below are in the 
order in which they occurred. All blind-alleys (e.g. solution paths dropped 
at intermediate stages) and groping around (what relationships to use, or 
derive, to do what and next) are included. 

In order to save space only the relationships generated will be listed, 
although a small sample of features from the concept matrix will also be 
shown. 



6 8 Mathematical Modelling—Methodology, Models and Micros-

Relationship list 

Relationship 

Level 0 

I eve! 0 

Number (in order 
of occur rence) 

Level 0 

Level 0 

I & 4 — ft 

6 — 7 

Le\rt (> 

8 & 9-+10 

Level 0 

5 -> Li 

13 -> 14 

13 -+13 

!3->t6 
13-+17 

14 & 17-* IS 

d 

(heat loss) 

Hr. - Wi = 0 

(steady tempera ture ; heat gain = heat lost) 

' - WKC(0t - d 0 ) 

( l o M , steady tempera tu re ) 

d0, 
r - p ^ H o - K<0, - 0 O ) 

d/ 

(heating up) 

d e , 

(cooling down) 

1 
/ - In 

.4 

B - A 6 

B - A 8, 

(heating up t ime) 

<f = HQtC 

(Cost of heating up in time / ) 

Heat loss = heat genera ted (night t empera tu re 

= /C(0 c - 0 ( J ) (< l h - f 4 ) 

Heat generated = HG(tlh ~ /,,) 

( temperature allowed to fall to 0 m i n ) 

Difference in cost - £ C ( R H S of 8 - R H S of 9 ) 

In 
B - Ad aim 

B - Ad 

Heat gained by house = T(0C - 9mtn) 
1 

/ = - In 
A 0 c - 00 

ft = (0, - «„)e~ A t + B0 

I 
t u = — In 

A 

ft - ft, 
8. 

8, = (0 r - e „ ) e - ^ + 0 ( 1 

^min = ( « , - 0 n )e t 0 O 

ft ~ ^rrun = (0, ~ 0u)(e " - C - * l O 

8 

9 

10 

U 

12 

13 

14 

15 

16 

17 

18 
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The following should be noted. 

(1) T h e relationships list is provided to indicate for each relationship: 

(i) its form, 
(ii) o ther relationships from which it is derived, for example 

8 & 9 —• 10 implies that relationships 8 and 9 are used to derive 
relationship 10. 

(2) The concept matrix (CM) shows each feature in order of occurrence 
( A - Z , A A , BB. . . .). Where letter(s) and a number appear together 
then the feature is a relationship; for example (HH20) means that 
feature H H is relationship 20. (See Fig. 5.) 

O the r examples of features are: 

A Thermal capacity of system (house) ( 7 ) 
R Heat generated by boiler and radiators 

E Heat loss is involved 

G Cost of maintaining a particular temperature is needed 

(3) The r e l a t i o n s h i p level graph (RLG) shows all relationships from the 
list. Note that relationships 1. 2. 9, 4, 5, 12 are each of level 0; these 
relationships require no mathematical derivation and depend solely on 
interpretation of the problem statement and associated basic physics. 
Relationships at level 1 and above are derived mathematically, for 
example relationship 3 i« d i - n x e d f rom r e l a t i o n s h i p 2 (level 0) a n d 

12 ,t IK - / ° Heat gained by house 19 

- n»< - emm) 

+ (e, - e„)iT[t'M»> - e ' * " ) 
+ ICe-*i.(/Ib - /,.)] 

II & 17 & 19 T(9C - (fl, - SuJe"'!. - et)) = RHS of 19 20 
-+20 
8 & U & 20 Solve f o r ( l a • / , „ 21 
-+21 

20 —» 22 Different'.- in heating amount-- loi given tfc 22 

/ 0 A 21 & 22 Difference in costs in terms of 8 t 23 
— 2.? 
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Fig. 5. Concept matnx: central-heating problem: Oke's initial modelling attempts. 

hence relationship 3 is at level 1. Intermediate mathematical detail in 
deriving a relationship is not shown (see Fig. 6 ) . 

( 4 ) An element of subjectivity is inevitably involved in the construction of 
the CM and RLG, particularly in the former. However, a number of 
colleagues have constructed both for the problem (and other 
problems) and close agreement has been observed in each case. 

The points, numbered ( l ) - ( 4 ) above, are general and refer to the essential 
characteristics of an analysis of any modelling at tempt using a CM and 
RLG, no matter what the original problem. The following are 
interpretations of Figs 5 and 6 and thus relate specifically to Oke ' s initial 
attempts at modelling the central-heating problem. However, several of 
the interpretations have a wider significance for modelling processes in 
general and these are examined as they arise. 

A ATOMIC 
I: INTERMEDIATE 
G GLOBAL 

SPECIFICITY IEVEL 

L G 
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Fig. ft. Relationship level graph for central-heating problem: Ode's initial 
modelling attempts. 

I Distribution oj features in CM Most of the features, even the ones 
identified initially, tend to be highly specific to the problem and also tend 
to be the most easily quantified (at least in principle). Hence the cluster 
of features in the top L-H corner and the sparsity of features in the other 
squares that is the most noteworthy characteristic, since relationships are 
defined in general to fit in the top L-H corner. 

II Generation of variables and constants Variables and constants are 
largely generated as relationships are formed. An analysis of the features 
involved shows that out of 15 symbols (variables and constants) 
generated, only three (9,. 80, T) were thought of before relationships 
were formed. An additional five symbols were introduced in level 0 
relationships, an additional three symbols at level 1, and the final four at 
level 2; the last symbol to be introduced is 9m,„ which occurs in 
relationship 1 1 Symbols such as A and B which were introduced solely 
for mathematical convenience are not included. 

As to be expected, towards the end of the goal seeking (high relationship 
levels), symbols of prime importance to the problem are no longer 
generated. 

III Level 0 Relationships The hardest part in getting started with any 
modelling problem is the formation of the first level 0 relationships. In 
this case, relationships 1 and 2 provide the starting point. Experience in 
modelling, as well as in the problem class (elementary heat exchange), 
appear to he important factors which lead to improvement. As the 
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solution progresses, however, additional insights are gained and these 
prompt the need tor further information. Hence the generation of 
relationships 4, 5, 9 and 12, each at level 0. Mathematics (solution) has 
helped in the intuitive (level 0) understanding of the posed problem. 

IV Formation of relationships at levels 1,2, . . . Relationships are 
often generated by working simultaneously at a variety of levels, for 
example relationship 19 (level 4) is formed from 18 (level 3) and 12 
(level 0). Note that not all relationships generated at a given level are 
subsequently used, for example relationships 7, 15, 16, (all at level 2) 
make no contribution to the solution (relationship 23) and therefore 
are redundant. 

V Sub-problem identification The R L G is partitioned into two 
distinct regions as far as relationship 19 (level 4) ; the upper region starts 
with relationships 1, 2, 9, 4 and the lower region starts with relationships 
5 and 12. all at level 0. Not until relationship 20 (level 5) is reached, is a 
link formed between the two regions. The upper concentrates mainly on 
heating up, and the lower mainly on cooling down of the house. Each 
region therefore represents the development of a sub-problem, where the 
two sub-problems are combined at relationship 20. The author (Oke) 
was totally unaware whilst modelling that these two sub-problems were 
in fact being tackled; it felt like working on one problem only. 

With some problems, however, it is not only possible to identify 
sub-problems at the outset, but it is quite clear that the problem can be 
broken down into very distinct parts. For example, when considering the 
shape and size of a pick-up arm in order to minimise sound distortion in a 
record-player (Oke, 1981a), it is clear before any mathematics is attempted 
that the following are kev sub-problems: 

(a) minimisation of sound distortion from a purely geometrical approach 
(treat recording groove as a system of concentric circles, concentrate 
on angle between a tangent and the arm at any point); 

(b) minimisation of sound distortion from a signal analysis approach 
(consider a sinusoidal transverse wave and the advance and retard 
effect produced by a non-tangential arm). 

4. RESULTS OF USING CM AND RLG IN THE ANALYSIS OF 
STUDENTS' MODELLING ATTEMPrS 

In order to test the appropriateness of CM and RLG, a selection of 
students' attempts al modelling was analysed. The problems concerned and 
the type of student involved are summarised in Table 1. 

The references after each problem contain details on possible modelling 
approaches. Briefly, the baby's milk bottle problem involves placing a 
baby's bottle full of cold milk into a saucepan of cold water and then 
placing on maximum heat on a cooker in order to heat up the milk to blood 
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Table I Problems and student types 

73 

Problem Type of s tudent 

Modelling the heating of a baby's bottle (Oke , 1979) 
Minimisation of sound distortion in a record player 

( O k e , 1981) 
Speed-wobble in motorcycles (Oke , IVol ) 
Evacuat ion of a school (Wilson, IQK'M First year sixth form. 

MSc Math. Ed. 

MSc Math. Ed 

BSc Appd Physics 
(2nd year) 

secondary school 

temperature in a minimum time; how much water should there be in the 
saucepan? The record-player problem has already been referred to. Speed 
wobble refers to oscillations in a castor: what causes this phenomenon? 
Evacuation of a school involves the problem of what order should 
classrooms be evacuated, and total school evacuation time, in the event of 
a fire. The problems were chosen for the variety of potentially different 
modelling approaches that were possible (although they are all analytical 
and deterministic rather than stochastic). Regarding the types of students 
who tackled these problems: MSc Mathematical Education is a two-year 
part-time course for graduate teachers of mathematics in secondary schools 
and colleges of further education; most have a background knowledge of 
physics to approximately G C E A-level (although rusty). Students on the 
BSc Applied Physics course have completed one year programmes of 
mathematics and physics. The first year sixth formers were all taking pure 
mathematics at G C E A-level. All the students had little or no experience of 
mathematical modelling. 

The students were split into groups of approximately four in each case 
and had only the relatively short duration of 3 - 1 0 hours (split over several 
sessions) in which to work. Each group was required to keep a careful log 
of all initial thinking, working and scrap-work. Each log of each group 
(a group log rather than individual written work was accepted for the 
purpose of these experiments) was analysed using a CM and RLG. 
Lecturer hints throughout each exercise were kept to a bare minimum, and 
were given only to prevent frustration or fixation (of ideas); even then, 
information was provided only in a broad form, for example, 'try some 
algebra and drop scale-drawings'. 

Overall, since the experiments were of short to medium duration and 
also because the students referred to had little or no modelling experience, 
the RLGs were considerably less developed than the one illustrated in 
Fig. 6. For the same reasons, fewer features appear on each CM. In order 
to give an indication of the student 's work, a representative RLG for each 
problem is outlined in Fig. 7 (to save space each RLG is drawn to 
approximately one-third of size of Fig. 6, that is, to one-ninth of area) . 

The speed-wobble problem was found to be the hardest in the time 
available (approximately 3 hours), and consequently the RLG shown in 
(c). Fig. 7, shows little structure. The overall features of a RLG, as discussed 
in the last two sections, are also illustrated in Fig In particular, two 
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sub-problems are identified in (d) on the evacuation of a school problem; 
neither the students nor their teacher (Wilson) had thought of the two 
problems at the outset, namely, that time and order in which classes 
evacuate into a corridor were two distinct aspects. 

The CM and RLG, particularly the latter, help in showing how 
formulation and solution take place in modelling processes, and they are 
capable of being used in the analysis of a variety of different students ' 
at tempts at modelling (from school to HE) . By comparing the RLGs of 
each group working on the same problem, student performance can be 
most readily compared (this has been done by the authors although, as 
explained earlier, only one group per problem is illustrated in Fig. 7). 

There are, however, two outstanding matters that require further 
investigation. First, the creative leap that is needed in the formation of 
the first level 0 relationship (before any mathematics is carried out) is little 
understood. Clearly this is a very difficult matter and all that can be said for 
the present is that students improve, as with modelling expertise generally, 
with more practice. It also seems very important for students to gain 
practice by modelling a particular class of problems where common 
features arise. Secondly, the strength or importance of relationships, apart 
from the basic or level 0 type, also needs investigating. Deeper insights into 
the direction of main thrust of formulation and solution would no doubt 
accrue if such strengths could be defined. 

5. IMPLICATIONS FOR LEARNING MATHEMATICAL MODELLING 

This section concentrates on learning mathematical modelling. The 
implications of this work for assessment are examined in the previous 
chapter. Discussions on teaching styles and the overall place of 
mathematical modelling in a curriculum may be found in a number of 
publications, for example Burghes & Huntley (1982), Burkhardt (1981), 
Oke & Bajpai (1982). 

Learning heuristics 
In an attempt to help inexperienced students in modelling, and in itie spirit 
of offering general guidance in the hope of providing some confidence in 
what is an unfamiliar activity, a list of heuristics (rules-of-thumb) was 
devised. The construction of the list was based partly on published 
literature in problem solving and mathematical modelling, and partly on 
the work of the previous sections on formulation-solution processes. The 
published literature may be referred to in Polya (1957). Kilpatrick (1969) 

rig. 7. Relationship Level Graphs (RLGs) of a selection of students' attempts at 
modelling (a) Healing of a baby's milk bottle: MSc Math Ed .group t. (b) Minim
isation of sound distortion in a record player: BSc 2 Appd Physics, group 4. (c) j 
Speed-wobble in motorcycles: MSc Math. Ed., group 4. (d) Evacuation of a school: j 

first year sixth form (Wilson, 1983). 

i 
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and Gagne (1966), for example, in problem-solving. In the case of 
mathematical modelling processes, although the term heuristics is rarely 
used, reference may be made for example to Morris (I 967) (early but very 
helpful work), Bajpai elal. (1982) and Burkhardt (1981). 

The number of heuristics in the list has been kept deliberately low The 
reasons for this are: 

(a) too many considerations serve only to confuse when considering any 
one problem. 

(b) a large list would tend to make each heuristic highly specialised and so 
dependent on a specific problem being considered. 

The list, which aims to cover most of the initial stages of modelling activity, 
is as follows. 

(i) Establish a clear statement of objectives. 
(ii) Do not write a vast list of features. 

(iii) Simplify (build up gradually, make guesses). 
(iv) Get started with mathematics as soon as possible. 
(v) Carry out some mathematics on initial relationships. 

(vi) Got a solution yet? (If not simplify the maths.) 
(vii) Know when to stop. (Do not seek perfection.) 

(viii) Interpret your solution. 
(ix) Validate your solution. 
(x) l( stuck observe practical situation or carry out a ' t h o u g h t 

experiment' . 
(xi) Have frequent rests. 

The work on formulation-solution processes described in the previous 
sections has been shown to support this choice of heuristics, in particular 
the following 

(l) Establish a clear statement of objectives See I (distribution of 
features in CM) and V (sub-problem identification) in Section 3. 
Encourage students to keep a log of all rough work done and to 
include initial 'vague' thinking; from this initial work, it is easier to get 
some reasonable objectives on how far to go, that is, what type of 
solution or solutions are being sought. Do not insist on initial 
partitioning of problem that is, identification of sub-problems; the 
partitioning might well evolve naturally at a later stage (of the 
formulation-solution process), 

(ii) Do not write a vast list of features With experience, students 
appreciate the virtue of this heuristic. See 1, II (generation of 
variables and constants) and III (level 0 Relationships) in Section 3, 
which show that additional features are identified as the solution is 
developed. 

(iii) Simplify Build up very gradually. Make guesses, make assumptions, 
add restrictions. Lump components (attributes) together and treat as 
single component (see Figs 6 and 7). 

(iv) Get started with maths as soon as possible Identity a tew variables, 
parameters, cons t an t s Write down one or two obvious mathematical 
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relationships. Keep mathematics as simple as possible. See 1, II, III, 
Section 3. 

(v) Carry out some mathematics on initial relationships This itself 
generates more variables, constants, and relationships. See I, 11, HI, 
Section 3. 

The order in which the heuristics have been listed is not necessarily the 
order in which they may be recommended for use. The results of teaching 
and learning experiments, together with the formulation-solution 
analysis of the previous sections, show that modellers (experienced as well 
as inexperienced) move forwards, recap, then move forwards again often 
carrying out several modelling activities simultaneously. However, the 
main intention of the heuristics is to provide some sort of guidance for the 
inexperienced when a new problem is starting to be tackled. In which case, 
the first few heuristics might with advantage be carried out in the order 
listed, that is, starting with (i): 'Establish a clear statement of objectives' 
and working to (v): 'Carry out some mathematics on initial relationships'. 

In an attempt to gauge student opinion of the usefulness of the heuristics 
as initial guidance in modelling, a questionnaire containing the full list. 
( i ) - (xi ) was issued. Students were asked to rank the usefulness of each 
heuristic according to a numerical scale: essential (value 1) down to useless 
(value 5). Several undergraduate and MSc Math. Ed. classes, including the 
groups reported on in Section 4, were issued with the questionnaire. For 
each class, the average rank for each heuristic was calculated. Overall, 
s tudents found the heuristics useful as measured by the grand average rank 
for all eleven heuristics (value: 2.6). There is inevitably considerable 
variation amongst individuals and groups of individuals in the ranking 
value ( 1 - 5 ) given to each heuristic, but the most popular (useful) heuristics 
are chosen by most as (i), (iii) and (iv). As experience in modelling is 
gained, students realise the value of each heuristic and give each a low 
(very good) ranking. 

6. CONCLUSIONS 

Two theoretical constructs, namely a Concept Matrix (CM) and a 
Relationship Level Graph (RLG) , have been devised and used in the 
analysis of formulation and solution processes in a range of problems. The 
discussion in the preceding sections has illustrated the complex nature of 
the processes involved and has shown that formulation and solution are 
intimately interwoven. The relationship level graph, tn particular, has 
shown that much of the modelling process is nonlinear in nature and that 
several activities are often carried out by working at a variety of stages 
simultaneously. The emphasis throughout has been on students who are 
inexperienced in modelling and who have in general had only a short time 
in which to tackle the problems involved. This latter constraint is 
considered to be realistic in view of the usual pressures which exist in an 
educational environment (except where extended project work, for 
example end-of-course assessment, is involved. 



7 8 Mathematical Modelling—Methodology, Models and Micros 

The following are the main points that have emerged. 

(1 ) Distribution of features There is n o discernible order in which 
features are recognised although there is a general movement from 
the bottom R-H corner of the concept matrix in early stages to the top 
L-H corner at the onset of a solution. 

(2) Basic relationships are often generated as solution proceeds The 
mathematical solution itself helps with further understanding and 
hence formulation of the problem by prompting the need for level 0 
relationships. 

(3) Relationships can occur in various forms General: (L, I) position in 
CM. Applicable not only to problem in hand (e.g., mass = volume x 
density, see (a) . Fig. 7) Specific: (L, A) position in CM. Directly 
related to problem. 

(4) Relationship level as goal seeking As with features generally, 
relationships often occur in no discernible order. However, a measure 
of the general progress made in finding a solution is provided by 
relationship level. 

(5) Most variables and constants are generated with relationships As 
mathematical deducations are made in the generation of relationships, 
so variables and constants are more naturally introduced. 

(6) Sub-problem identification It is difficult to find a general rule 
regarding the recognition of sub-problems. Sometimes sub-problems 
are identified at the outset, on other occasions they are only 
recognised by partitions in a relationship level graph. 

In future work it is intended that students are also encouraged to construct 
their own concept matrix and relationship level graph as their problem 
proceeds, in order to see if they gain further understanding of their 
attempts and thereby improve their solution as it develops. It is predicted 
that blind-alleys (manifested in redundant relationships) and sub-problem 
partitioning may become apparent early in the modelling and so clearer 
thinking will ensue which in turn could lead to less laborious solution paths. 

The implications of the formulation-solution analysis in the 
development of learning heuristics are discussed in Section 5. Eleven 
heuristics have been developed and overall student opinion has supported 
the usefulness of each. 
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A New Approach to Model 
Formulation 

D. E. Prior 
Sunderland Polytechnic, UK 

The expression of any experience is first and foremost through word 
association. The richness of a person's language contributes directly to that 
person's ability to express the factual and the mood content of a 'real world 
happening", both capturing the moment for himself and also allowing him to 
share it with others. Those with whom the observer wishes to share this 
experience must be capable of interpreting the verbal utterances in such a 
way that the essential experience of the observer is preserved. The above 
simple observation must have profound consequences in the world of 
modelling since all models stem from the abstraction from the world at 
large of an experience by a modeller and no matter how the model 
ultimately is represented it begins life in mental imagery expressible only, 
in the first instance, in and through words. This 'embryonic model ' stage 
in the construction of a model has had very short shrift from modellers 
generally and the mathematical modeller in particular and yet it is a most 
vital link in the modelling process, bridging, as it does, the two worlds of 
experience and model construction. 

The following chapter is an attempt to show that the modeller may take 
an alternative path from the 'real ' to the model ' world to that which 
usually is mapped out for him on account of the chosen method of solution. 
Attention is drawn to the fact that this chapter does not concern itself with 
the full methodology of model formulation developed at Sunderland, only 
that part of it which has been found in practice to be the most difficult to 
execute. The content of the chapter is based upon a session carried out with 
a group of experienced modellers who agreed to act as modelling guinea 
pigs. 

Before any account is detailed of experiments entailing new approaches 
io the formulation of a model the concept of 'model formulation' in 
the context of this chapter first should be made more clear, and 
some discussion ensue concerning a popular approach to model 
conceptualisation and formulation. 
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Any experience, o r system, in which the modeller has an interest is seen 
by him to contain certain discrete e lements which are perceived to bear 
relationships each to the others and which al together , through some 
process applied by the modeller , become the 'model ' for the exper ience. So 
far as this chapter is concerned the process of model formulation is that 
process which yields the all important set of p ' - ^ ^ ' - and d^<- ^- s t 

necessarily yield the relationships between them. 
Once the relationships between the e lements are expressed u.<.,i i u c 

p rob lem, as such, is ' solved' , or. rather, fixed'. Expressing particular 
relat ionships between elements through equat ions and solving such 
equa t ions is not necessarily solving the problem. When the modeller 
speaks of 'solving' he means 'deeper , or fuller, unders tanding of . Equa t ion 
solving is purely a mechanical process which does nothing more than 
p roduce a certain numerical result which is intrinsic in the expression t o 
start with. 

Al though what is said above is nei ther particularly d e e p philosophically 
nor complex intellectually the problem is that many model lers , and most 
mathemat ica l model lers , appear to miss, or choose to ignore, the point and 
seem, on the evidence of their current performance, convinced that the 
model formulation stage is the immediate production of an equat ion or set 
of equat ions . Modellers take for granted that the elemental con ten t of 
problems is not a difficult issue provided the 'correct ' s tandpoint from 
which to view the problem has been decided upon and tend to concentra te 
their efforts entirely upon determining what type of relational opera to rs 
need to be applied to the set of variables chosen to represent the e lemental 
content so that the problem may be 'solved 1 . That this is so is found by 
considerat ion of a most widely used form of model formulation method 
called the feature list approach (Fig. 1). In the feature list approach all 
relevant features of the system, or experience, are written down by the 
modeller . By what process the modeller decides how this feature or that is 
or is not relevant is seldom discussed, but what is interesting to note is the 
process by which the modeller decides that a feature having been chosen is 
now no longer worthy of further consideration and should be struck off the 
feature list. This process of the removal of a feature from the list seems to 
depend upon whether or not its presence is embarrass ing in that it hinders 
the traetability of an equat ion which the modeller somehow seems to know 
beforehand that he is going to write. In a nutshell the model construction 
stage of the feature list approach is driven from the solution regime. No 
wonder experienced modellers can get away with using the feature list 
approach whereas beginners get hopelessly lost. As the process unfolds the 
experienced modeller 'knows' or develops a 'feel for' the particular b 
equat ion isomorph for the experience to be model led and can there tore 
gradually manipulate the feature list, following a pseudo-form of ' eureka! ' 
arguing, to produce the desired e lemental content to which the requ 
mathematical opera tors may be appended to produce the requi red , 
ant icipated, solution. 

What the above implies ot course is that in reality most mathemat ica l 
modell ing is to do with shoe-horning the breadth of man ' s exper ience into 
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B E G I N 
set up 

model e q u a t i o n s 
4 

write down 
all relevant features 

of the problem 

Y E S 

remove a 
feature or 

features from 
the feature list 

Fig. 1. 1 enure list approach In model formulation. 

a very few well tried and tested equation types for which the solution 
techniques are well known. The mathematical modeller fools himself, and 
others, into believing that he is solving many and varied situations when in 
reality he is continually trimming down experience to conform to a few well 
understood patterns. Any creativity in the naive modeller is stifled by the 
construction of an edifice of standard techniques which eventually drives 
him to invert experience and formulation. Experiences stem from and are 
cast in the moulds of whatever techniques are selected to 'solve' the 
experiences. 

The above approach can only lead to a race of modellers who naturally 
and as a matter of course, expect their world to he ordered and who think 
mechanically, not analytically. Thus the experienced modeller says to the 
beginner who clearly is making no headway at all in the formulation of a 
model, 'never fear, with experience, the art of modelling will be acquired 
and you will find yourself modelling'. What the experienced modeller 
really means is 'never mind, once you have grasped the few standard 
analogies we use to model experiences around us you'll be all right'. 

From the foregoing, however, no-one should construe that the benefits 
which can result from the proper application of the principle of 
isomorphism are not fully appreciated. The concept of isomorphism when 
used properly is a very powerful aid to modelling and to the further 
understanding of systems, but when used as many 'feature list' modellers 
use it then errors of model formulation can occur. 

Before the group of modelling guinea pigs could settle down and the 
experiment get under way some discussion took place and an agreement 
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was reached about the definition of a model. Deimitions of a model and 
also of what constitutes exactly the modelling process abound in the 
literature, but most seem to miss the point in that there is an implicit 
assumption that the reader has sorted out the relationship between his 
environment and the verbal interpretation of the signals reaching him from 
that environment. In actual fact nothing could be further from the truth. 
However, it is not the intention to discuss here issues arising from the 
above concept, essential though it may be. Suffice it t o say that discussion 
of these ideas was useful in arriving at a definition of a model which the 
group found most satisfactory for use during the experiment. 

The group decided that the most important criteria by which a modeller 
might judge whether or not he has obtained a 'model ' of the experience 
under scrutiny are that the model must be 

(1) a representation of that experience, 
( 2 ) capable of being validated, 
( 3 ) capable of being used, by itself, for further study of that 

expe rience. 

Having determined the operating standards for the experiment the 
group were then presented with the names of two common systems and 
asked to construct a model of each of them. The first system the group was 
asked to model was 'a pendulum' and the second system 'a fire'. 

The pendulum presented no problems, most of the group returning the 
first of the following two mathematical models for the periodic time. One 
or two supplied the second, more complex, solution which holds for 
oscillations larger than those near which the former simple model breaks 
down. 

. . . small oscillations C1) 

. . large oscillations (2) 

where K = I (1 - r ) ' ( l - * V ) - ! d r 

The fire, however, caused a minor revolution. Numerous questions (and 
objections) were placed by the group in response to the request to model 
this concept. Typically responses ranged from the indignant 

you can't model a fire! 

through 

insufficient information—what exactly is required—the heat produced 
by a fire at different distances from it. or the speed at which the fire is 
advancing—or what? 

to 

If 1 am to model the chemical equations of combustion then at what 
depth of analysis am 1 to stop? 
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Overall it was obvious that the group had a definite, firm, clear 
conceptualisation of a pendulum, but felt stranded upon the slippery slopes 
of indecision and uncertainy so far as the abstraction of the concept of a 
fire from the real world was concerned. It is interesting to note that the 
questions about the fire hinged not at all upon the essence of 'fire' itself, or 
whatever concept that word may have provoked within the group's 
combined consciousness, but instead only upon the results consequent to a 
conflagration combined with familiar, well entrenched concepts o f the 
modelling world namely, heat and a heat gradient, and speed of movement 
and an area extension. It was as though the group had subconsciously 
agreed to shun the unfamiliar and collectively rearrange the question posed 
to align upon more familiar principles and effects associated with, and 
consequential upon, the phenomenon of 'fire'. 

So far as the pendulum was concerned no such confusion existed. The 
essence of a pendulum was embodied in the equations given above and that 
was that. Perhaps so far as the pendulum is concerned the members of the 
group all felt to be very much in the position of the experienced modeller 
alluded to at the beginning of this chapter, whereas with regard to the fire 
each member felt very much the beginner, having nothing at all to fall back 
upon as an analogue of a fire. 

In order to help the group to recover their composure some points were 
put to them about the process of model abstraction and in particular the 
following two essential ideas floated. First, that no matter in what way the 
real world system' is ultimately represented or model led '—be it 

schematically, iconically or mathematically—the process of abstraction 
from the world is by the application of many successive mental 'sieve 
and compress' processes each one filtering and moulding the 
conceptualisation of the experience aligning the abstraction more and more 
upon the beliefs educated, instilled and subconsciously absorbed into the 
modeller through his cultural background and each one separating the 
experience more and more from the final model. Secondly, and this is the 
more important and profound of the two points, the process of abstraction 
takes over from that point in the process where the modeller first believes he 
has grasped a mental image of the system under study. This last s ta tement is 
tantamount to declaring that for the average modeller, once the perceived 
system and the idea (or mental image) of the system are linked then the 
process of model abstraction and construction is mechanical, limited only 
in scope by the technical expertise and experience of the modeller in 
making complex constructions analytically tractable. In other words, once 
the modeller thinks he has got it, so to speak, everything else that follows 
in his endeavour to model the experience is encompassed, limited and 
defined by his ability to apply a known solution technique. 

The group then was encouraged to consider what might happen were the 
modeller to concentrate his attention upon that phase in the model 
abstraction process immediately preceding the mechanical phase discussed 
above and which is termed simply the 'verbal expression' phase to yield 
what was described at the very start of this chapter as the 'embryonic 
model' . 
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Model abs t rac t ion and conceptua l i sa t ion s t a g e 

Model formulation 
s s t a g e 

Fig. 2. Model abstraction and development through 'VFM 
Spectrum Approach) 

A very simple, but quite effective, schematic representation of the verbal 
expression phase of use in encouraging beginning modellers to test their 
ability to abstract experiences from the world about them is illustrated in 
Fig. 2 . As the statement describing the experience is studied and 
manipulated, attempts are made to 'push' the statement from the left-hand 
end of the spectrum where the sheer descriptive aspects are very much to 
the fore and t h e model aspects—as laid down by the earlier elementary 
criteria—are not in evidence, to the right-hand end where the model 
considerations are dominant and the descriptive side supportive rather than 
precipitating ambiguities. 

The group now was redirected to produce two verbal representations of 
the experiences 'a fire' and 'a pendulum' which could be positioned upon 
the verbal expression spectrum. The following summarises the efforts of 
the group: 

A FIRE 
A pile of dry sticks is placed upon dry, crumpled paper and the paper 
ignited. When substantial flames are observed coal is heaped l ibe ra l ly 
over the pile of wood and the whole then left t o b u r n 

A P E N D U L U M 
A heavy weight, at rest, suspended by a light thread, is pulled aside a 
short distance from its point of rest and then released. 

Note that no attempt was made at any stage to redirect the group's energies 
or attention through criticism of the initial representations. For example, it 
would have been very easy to comment that the statement for the fire was 
less a representation of 'a fire' and more a representation of 'making a fire'. 
Similar comment might have been directed to the initial representation of 
the pendulum. It has been discovered that most aspiring modellers hardly 
ever construct the 'essential* model , preferring instead to formulate a 
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representation which covers a description of the content of the experience 
under scrutiny The argument is always open, of course, as to which of the 
representations is the model—the representation of what the experience is 
through what it contains or through what it appears to do. Needless to say, 
to attempt even to begin to unravel the thread of this particular cocoon of 
model abstraction philosophy would absorb more time and energy than 
this chapter is allowed, yet the points are made to indicate to the reader 
that this part of the modelling methodology needs careful thought and 
discussion. 

To return to the group experiment each statement was then tested 
against the three criteria for model acceptance. Each was certainly a 
representation of an experience. Each also could be verified by the simple 
expedient of following the words and returning from the statement back to 
the experience. Had the statement for the fire, say, used the word "wet' 
instead of 'dry'' 'hen the statement soon would be shown to be invalid. 
However so far as the third criterion was concerned no member of the 
group sincerely could say that the statements aided further study and 
appreciation and understanding, through them, of the systems to which 
they referred. The statements were too far over to the descriptive end of 
the expression spectrum. According to the criteria the statements were 
much nearer descriptions of the named systems than models; but the 
statements were a start. The very fact that some agreement had been 
reached amongst the group members about a common statement which 
modelled, albeit weakly, their collective association of the concept of 'a 
fire' in the real world about them was an extremely important first step. No 
matter how weak the 'model ' content of the statement it could now be 
operated upon to push it through the expression spectrum strengthening its 
'model' content by seeking support from a more skilful and definitive 
arrangement of the 'descriptive' content. Such rearrangement is achievable 
through collaborative discussion. Greater insight is gained into the 
meanings of the terms used in the statements through sheer familiarisation 
with them over prolonged debate. In this manner does this part of the 
model conceptualisation method answer the above implied criticism of 
current modelling approaches that insufficient time is devoted to the 
familiarisation, insight gaining and understanding of the problem through 
discussion in the early phases of model construction? 

In this manner then followed what was, for the group as a whole, a very 
frustrating hour. The members were asked continually to review the 
statement and as a result gradually 'push' it as far towards the model end of 
the spectrum as possible. 

Finally the following statement for the verbal model of a 'fire' was 
obtained 

A FIRE 
A speed of combustion which always tends in a direction so as to meet 
the amount of combustible air, which always adjusts to oppose the 
direction of the speed of combustion. 



A New Approach to Model Formulation 87 

The reader is invited first to re-read the earlier statement for the fire and 
compare it with the above and then to test the above statement against the 
criteria for model qualification and satisfy himself that indeed the 
statement has passed from one end of the expression spectrum to the 
other—from being a verbal description of 'a fire' to becoming a verbal 
model of one. 

The next stage of the methodology depends upon to what extent the 
system under scrutiny is perceived as a feedback system. In this context 
feedback is broadly defined as the 'modification of input streams to the 
system by all, or parts of, output streams from the system'. If any feedback 
relationship along these lines is deemed to exist in the system, and is 
reflected in the model, then a well established technique is next employed 
to 'push' the model off the end of the verbal expression spectrum into a 
no-man's land which bridges model conceptualisation and model 
construction. This well known technique is the Cinderella of the modelling 
world and is called causal loop diagramming. It is a perfect complement to 
the method of model conceptualisation through the verbal expression 
spectrum for feedback systems models, in that it literally shifts a feedback 
system model sufficiently beyond the rather arbitrary associations with 
which words endow even extreme right-hand end models of the verbal 
expression spectrum into an area where the aura of quantitative, as 
opposed to qualitative, judgements makes itself felt. Causal loop 
diagramming is the important conceptual l ink between the qualitative 
assertions of experiences and their quantitative equivalents which usually 
confound and confuse the less mathematically biased, but the nonetheless 
sincere, modeller. 

Briefly, a causal loop diagram is a schematic representation of a verbal 
model which has been pushed to the extreme RHS of the verbal expression 
spectrum and in which certain elements of the model are connected by 
arrowed lines. Each arrowed line represents the influence that the tail 
element of the arrowed line exerts over the head element. Each arrow 
carries either a positive or a negative sign. A positive sign signifies that any 
change in the tail element of the influence link results in a change in the 
head element which is in the same direction as the change in the tail 
element. Thus a decrease in the tail element of a positively signed link 
results in a decrease in the quantity associated with the head element. 
Similarly an increase in the tail element results in an increase in the head 
element. A negative sign signifies that any change in the tail element of the 
influence link results in a change in the head element which is in the 
opposite direction to the change in the tail element. Hence a decrease in 
the tail element of a negatively signed influence (or causal) link results in 
an increase in the corresponding quantity at the head of the arrow. A 
decrease in the value of the tail element of a negatively signed influence 
link results in a consequential increase in the value of the head element of 
the link. 

Using this technique the modelling group produced the causal loop 
model depicted in Fig. 3 of the previous verbal model of "a fire'. As can be 
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Fig 3, Causal loop model of 'a fire". 

seen from the negative sign assigned to the single influence loop, the causal 
loop model allows the system depicted to be analysed further by its clear 
presentation of the nature of the feedback at work in the model, in this case 
negative or goal seeking. It is immediately evident that upon the basis of 
the model developed thus far a fire is a negative feedback system. In other 
words, counter-intuitively, the model is saying that fires do not burn more 
fiercely the more fiercely they burn, instead they continually seek to 
achieve a state of equilibrium in which the fierceness of the burn grows or 
diminishes to match the amount of burnable air reaching the area of the 
burn. 

And what of the pendulum? 

The reader is invited first to study the verbal statement on page 85 and 
then, before reading on, to draft for himself first a verbal model of 'a 
pendulum' and then to push this model off the end of the expression 
spectrum by constructing a corresponding causal loop model. 

The results are. as the modelling group discovered, both startling and 
quite revealing in terms of the power of this method to provoke thought 
and discussion about what was hitherto believed to be a simple, 
straightforward and well understood system. 

The modelling group finally produced the following statement for the 
verbal model of a pendulum': 

A P E N D U L U M 
A speed of change of angular displacement which always tends in a 
direction so as to oppose the angular displacement, which always adjusts 
to oppose the direction of the speed of change of angular displacement. 

Figure 4 is the causal loop diagram which the group developed from the 
above model. 

The startling results of these analyses are twofold. First, the similarity of 
appearance of the two system models was remarked upon. Secondly, the 
even more strongly counter-intuitive feedback mechanism than that 
discovered to operate in the case of a fire discovered to lie behind the 
behaviour of a pendulum was the source of much argument, discussion, 
debate and disagreement—even among the experienced physicists in the 
group Intuition dictates that a pendulum must be a goal-seeking system, 
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Fig. 4. Causal loop model of 'a pendulum'. 

that negative feedback must operate here. Yet clearly the system is driven, 
counter-intuitively, by a positive, or growth promoting, feedback loop. The 
reader is left to study the results of the modelling experiment for himself 
and to convince himself of the validity, or otherwise, of the models 
developed. 

In conclusion, past discussions with members of a more orthodox school 
of modelling approach make it imperative to add that the above described 
segment of an approach to model conceptualisation, formulation and 
construction is not to be viewed as a competing methodology, to be 
selected in preference to this or that particular approach to model 
abstraction. Instead the above should be used whenever possible to 
enhance, discussions ano. encourage debate and deepen the 
understanding of any system that it is the intention of the modeller to 
model . The method should be employed to broaden skills participation 
through the involvement of a wider audience on account of its ease of 
appreciation by the non-modelling fraternity. The method primarily uses 
words to explore the major relationships perceived by the modeller to be 
responsible for the behavioural characteristics of the system under study 
and though the method lends itself more to those areas of study which are 
not the traditional hard sciences it is the conviction of the author that 
nothing but a more profound feeling and understanding for many 'hard' 
systems devolves to the scientist who is prepared to augment his 
approaches to model construction by consideration of the above points. 
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Group Projects in 
Mathematical Modelling 

G. L. Slater 
Sheffield City Polytechnic, UK 

SUMMARY 

Questions which often face us when trying to integrate a modelling 
component into a mathematics course are the following. How much 
modelling should we expect students to do? What are they likely to learn? 
Should we allow them to work in groups? What are we trying to assess and 
how should we do it? 

This chapter discusses these questions in the light of one year 's set of 
projects from the HND in Mathematics, Statistics and Computing at 
Sheffield City Polytechnic. 

1. INTRODUCTION 

In many institutions, a modelling project is part of the curriculum for 
students on degree or HND courses involving mathematics. At Sheffield 
City Polytechnic, one instance of this is in Part II of the sandwich H N D 
course in Mathematics, Statistics and Computing. As in many such 
courses, the students work in groups of two or three, each group being 
supervised by one member of staff. This chapter is concerned with looking 
at the set of these projects for the academic year 1 9 8 4 - 8 5 , and making 
some assessment as to the worth of this part of the course. 

2. THE COURSE 

The Higher National Diploma in Mathematics, Statistics and Computing 
course has an entry qualification of one A-level in mathematics, the 
majority of students having a D or E grade pass. Their first acquaintance 
with the ideas of modelling comes as a brief introduction in the first year, as 
part of a mathematical methods course. However, this is little more than an 
introduction to the modelling loop (see, for example, Mason, 1984) and 
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the presentation of some well-tried models. The modelling course is 
scheduled for the first term of the third year, immediately after the 
one-year industrial placement. The course is timetabled for six hours/week 
in two three-hour blocks. Somewhat unfortunately, these are Monday 
morning and Friday afternoon—not times expected to be conducive to 
fruitful modelling. 

The first six weeks of the course are devoted to practical modelling, with 
the students finding out by doing. At the beginning of the term, the 
sessions are mostly on problems to which a fairly short first iteration 
around the modelling loop seems likely, so that the idea of performing a 
second iteration is acquired early in the course. Good students, of course, 
rapidly get into the problems and wish to improve their model several 
times. The problems at the beginning of the session are not expected to 
involve difficult mathematics; one of the disadvantages of running a 
sandwich H N D is that little academic work is remembered after a year on 
placement in the real world. As the term progresses, skills increase and 
mathematical ability returns; the problems also grow in complexity, and 
students are encouraged to provide a more sophisticated approach. The 
schedule includes some old favourites, most of which have been published, 
which certainly do not all originate from Sheffield City Polytechnic. Many 
of these papers can be found in journals such as the Teaching of 
Mathematics and its Applications and references to most of the topics are 
given at the end of this chapter. 

Week Monday Friday 

1 Introduction 
Rugby goalkicking 

2 Random response 1 Random response 11 

3 Village school Technological innovations 
4 Sand quarrying I Sand quarrying 11 

5 Barnicle geese Introduction to extended Barnicle geese 
modelling exercises 
External speaker 

6 Oscillating bar 1 Oscillating bar 11 

The next four and a half weeks of the course is spent with the students 
working on their projects, known officially as extended modelling 
exercises. Students see their supervisors roughly once a week whilst 
working on their projects; the term culminates in presentations to the 
whole class, by each project team, in the presence of most of the project 
supervisors and of the BTEC External Moderator. At the end of the 
presentation session, the students must submit their written project. 

3. THE PROJECTS 

Most of the project titles are chosen by the staff from their own interests, 
some of them are original, but mostly projects arise from articles appearing 
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in journals. About 20% of the projects are duplicated from the previous 
year, but usually with different supervisors and hence a different emphasis . 
The rest of the projects are new to the course. This is not an organised 
policy but, having supervised a particular project once, staff seem reluctant 
to face the same problem again! 

The students choose their own teams in which to work for the projects; 
teams were prescribed to have two or three members . It is interesting to 
note that, as usual, the girls group together as do the eccentrics. More 
surprisingly, weak students seem to stay together; the desire to hide their 
deficiencies from their colleagues being stronger than the desire to get 
better marks by working with a better student. 

Students select their project after a five minute presentation by the staff 
member who is offering the project. More projects than student teams are 
offered, and the students vote for their choice of project. Usually, everyone 
finishes up with their first or second choice, but sometimes backstage 
negotiations must be carried out! It seems that students do not vote 
entirely on the basis of the topic offered for the project. Other factors, such 
as the personality and/or familiarity of the supervisor and the involvement 
of microcomputing in the project, seem to be significant. 

The projects undertaken in the year were as follows. 

Snooker 

Ordnance survey 

Secret messages 

Stats packages on the BBC 
Parent-teacher evening 

Shudders field 
Computer configurations 

Cistern analvsis 
Shot putt 

Tape counting 

Advertising and sales 

Broken glass 

Establishing the likelihood of potting a 
ball and analysing one particular shot 
Validating mileage claims by modelling 
distance measuring on a map 
A survey of methods of sending secret 
messages and a detailed investigation of 
the RSA method 
An investigation and a t temp to write one 
Designing and implementing an algorithm 
to timetable a school parent- teacher 
evening 
The siting of a new shopping centre 
An evaluation study to gather information 
on our mainframe system and answer 
certain questions related to performance 
Modelling the flow of water into a cistern 
What is the optimal angle for putting the 
shot? 
To model the counter reading on a cassette 
recorder and the time elapsed in playing a 
cassette tape on the recorder 
An investigation into the way in which 
sales figures are affected by advertisement 
A problem involved in the occasional 
breakage of a float glass sheet and its 
prevention by the appropriate positioning 
of rollers 
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Industrial location 

Athletic perluinijnce 

Minimising costs in siting a 
warehouse given different customer 
location patterns 
Examines the performance of male and 
female athletes at various running events 

4. THE SUPERVISORS 

As in most mathematics departments, the staff in our depar tment can be 
classified into two disjoint categories—modellers and non-modellers. 
Modellers have some idea of what modelling is all about and have 
therefore carried out some modelling themselves. Non-modellers may well 
have heard all about modelling at great length but, because they have not 
actually tried any for real, they do not understand the difficulties 
experienced when modelling or, indeed, the distinction between models 
and modelling. A different categorisation of the staff can also be made 
into computer-literate and computer-illiterate. These two categorisations 
obviously have an effect on any project supervised. A wide range of staff 
becomes involved in this project exercise, mostly by volunteering: 
however, those who are press-ganged are usually offered a project that has 
been run previously to supervise. Although this way seem kind, it does not 
give the members of staff the experience of actually trying to do the 
modelling themselves, which would be valuable experience for non-
modellers and modellers alike. 

What staff expect of the projects and of the students also seems to vary 
tremendously. Some staff expect to have to show the students how to 
tackle the problem and, of course, they have to. Some expect the students 
to solve the problem all alone and, of course, in most cases they do not. 
Some expect their students to report progress every week and they do, 
some expect the students to see them only when they are in 
difficulties—this seems to have mixed effects. Some staff concentrate on 
the presentation of the final report, and expect 50 page word processed, 
beautifully presented, bound reports and usually get it. Others expect a few 
sheets of handwritten notes and, of course, they get it. Some staff expect 
well presented talks and help by giving practice runs with advice and help 
in presentation skills, others give no help with the oral report , usually with 
the obvious consequences. These differences are particularly obvious in the 
preparation of O H P slides for use in the talks. It might be reasonable to 
assume that students who spent a significant portion of the week looking at 
O H P slides would know what went into a good one, and what was and what 
was not visible, but it does not seem to be so. 

Supervisors also have different approaches to arranging meetings with 
their students; since these sessions are not timetabled, finding time is a 
problem for all, but we see a lot of different solutions to this problem with 
meetings at 8.30 a.m. or after 5 p.m, or in the pub at lunchtime. How 
important is a modelling project? 
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5. THE OUTCOME 

What, then, was the outcome of these projects? What exactly is modelling 
is a difficult judgement to make but. in my estimation only 11 of these 14 
projects show any modelling at all. This may not be as desperate as it 
sounds; some of the projects were never really intended to be modelling 
exercises, they were interesting project topics and were presented to the 
students as such. The classification into projects containing modelling and 
their supervision by modellers or non-modellers is interesting. 

Supervisors 

Projects Modellers Non-model lers 

Modelling 9 2 
No modelling 2 1 

If we consider how many of the projects actually closed the modelling 
loop, comparing their results with reality and at least suggesting ways in 
which their model might be improved the results are even more interesting. 

Projects 
modelling 

Supervisors 

Modellers Non-model lers 

Loop closed 
No loop 

7 0 
2 2 

An investigation into the level of mathematics used in the 14 projects 
show that six were actually using the mathematics learned on the H N D 
course—however, the title Mathematical Modelling is something of a 
misnomer: five involved arithmetic only, three involved O-level 
mathematics only, six involved H N D 1 level mathematics. 

The computing used can be classified by none, package use, actual 
coding and also by whether or not the supervisor is computer literate. 
Looking at these in the light of which project actually involved some 
modelling, we can see that few projects had time for modelling and coding. 

Supervisor 
Project — _ _ _ 
computing use Computer literate Non-l i terate 

None 4 3 
Package 2 0 
Coding 4 1 
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Project 
computing use Modelling Non-modelling 

None 
Package 
Coding 

2 
2 

0 
3 

u 

6. PRACTICAL CONSIDERATIONS 

The assessment of these projects is clearly a difficult procedure. There are 
the oral and written elements to balance, and problems in measuring and 
allowing for the amount of help given to the students and for the 
expectation of performance made. The scheme we use is as follows. 

Talk 

Clear statement of problem 5 
Discussion of model 

(1) Assumptions * 
(2) Outline of method of solution,, analysis 
(3) Presentation of results ~ 

Discussion of results 

Report 

General layout 
( 1 ) Division into appropriate sections 10 
( 2 ) Neatness 10 
(3) Use of English 10 

If the report contains none of supervisor's work, we multiply the mark 
obtained above by 1.0. If the project has been substantially directed by the 
supervisor, with a large contribution to the modelling and the analysis, we 
multiply the mark by 0.7. Otherwise, we allocate a multiplying factor in the 
range [0.7, 1.0). 

Oral presentation is marked by all the staff present, which is usually 
somewhere between 5 and 10 in number. The report is marked by the 
supervisor; we try to double mark, but this is not always possible. The 
difficulty of one of the students doing most of the work is always present. 
In these circumstances marks are allocated in proportion to the amount of 

Content 

(1) Introduction to and clear statement of problem 
(2) Discussion of assumptions 
(3) Error-free analysis 
(4) Clear presentation of results 
(5) Discussion of results 

10 
15 
15 
15 
15 
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effort put in, usually after discussion with the indiv iduals. Investigating the 
marks shows that projects either score well on the oral or on the report , hut 
rarclv on both. 

Report 

Talk > 6 5 % < 6 5 % 

> 6 0 % 1 5 

>oU"„ 5 3 

It is, however, worth noting that the range of marks allocated to the 
projects was 40% to 78%. Are all our projects average to just above 
average.' 

On a different practical level, how efficient are these projects in terms of 
teaching resource? Staff supervising a project are allowed 0 .5 hour per 
week for the duration of the project. With 29 students on the course and a 
student timetable of 2 0 hours, the projects run at an SSR of 17 .4 :1 . This 
cannot be described as extravagant, even after adding course overheads . 

7. WHO LEARNED WHAT? 

It may be a little late, but it is worth now considering the avowed aims of 
this project. 

In this part of the course students gain experience in the activities of 
mathematical modelling—working in small groups, sharing tasks within 
the group, taking responsibility for a section of a project, presenting oral 
and written reports. 

It cannot be argued that these aims are not met. However, what is it that 
we are really hoping for? Students certainly team to work together in 
groups, they learn to work to a very tight and fixed timescale, they try their 
hands at oral and written communication in a more meaningful way, and 
they also learn to defend their work in discussion. Subsidiary benefits are 
practice in acquiring word processing skills, and increased use of micros. 
The experience of starting a piece of work not knowing which of their 
mathematical skills they will need, the necessity of trying out their ideas 
and possibly exposing them to the ridicule of their fellow students and, ot 
course, in many cases, experience in data collection, are all valuable. Most 
of the students do seem to learn most of these things. 

For staff, the involvement of a large proportion of their number in the 
same course is valuable, and in most cases the relationship between stall 
and students improves. For those staff press-ganged into assistance, there is 
probably some experience of modelling, and certainly the exposure to new 
teaching methods. Some are even forced to come to terms with new 
technology by their students ' enthusiasm. 
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8. WHERE T O FROM HERE? 

W e f i rmly b e l i e v e tha t o u r m o d e l l i n g p r o j e c t s a r e w o r t h w h i l e a s t h e y s t a n d . 
H o w e v e r , t h e c o u r s e is b e i n g r e v i s e d , a n d so c h a n g e s a r e c o m i n g . We a r e 
k e e p i n g t h e p r o j e c t s a n d e x t e n d i n g t h e i r e t h o s i n to a n e w a r e a , t h a t of 
w o r k s h o p s . T h e i d e a of t h e w o r k s h o p s is t o p r o v i d e a f o r u m in w h i c h a 
m u l t i t u d e of ac t iv i t i es , which can b r o a d l y be d e s c r i b e d a s i n t e r d i s c i p l i n a r y , 
m a y b e d e v e l o p e d . T h e w o r k s h o p s will p r o v i d e a l a b o r a t o r y e n v i r o n m e n t 
for t h e l e a r n i n g of m a t h e m a t i c a l s c i ences , a n d a focus for b o t h s t u d e n t s a n d 
staff o n c ros s -d i s c ip l i na ry a p p l i c a t i o n s w o r k . T h e s e w o r k s h o p s will s t a r t 
w i th a p i lo t in t h e nex t a c a d e m i c y e a r . C u r r e n t l y they a r e i nvo lv ing a g r e a t 
d e a l of staff e f for t in t h e p r e p a r a t i o n of c o u r s e w a r e , p a r t i c u l a r l y m i c r o 
s o f t w a r e . I e x p e c t t h e r e will b e a r e p o r t o n t h e p r o g r e s s of t h e w o r k s h o p s a t 
t h e n e x t I n t e r n a t i o n a l C o n f e r e n c e o n t h e T e a c h i n g of M a t h e m a t i c a l 
M o d e l l i n g ! 

S o m e of t h e a i m s of t h e p r o j e c t s m a y well be a c h i e v e d by t h e w o r k s h o p s 
a n d it is h o p e d t h a t in th i s way o u r p r o j e c t s m a y b e a b l e t o d e v e l o p a 
g r e a t e r m o d e l l i n g f l avour t h a n a t p r e s e n t . 
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Mathematical Models in the 
Teaching of Systems Thinking 

E. F. Wolstenholme 
University of Bradford Management Centre, UK 

SUMMARY 

This chapter reports on the experiences gained over the past few years in 
developing and using mathematically based models to introduce students 
to systemic concepts at Masters level in Business Administration at 
Bradford University Management Centre within a managernent science 
frarnework. 

The chapter examines both the perceived need for managernent courses 
which promote systemic thinking and the background rationale leading to 
the development of the methodology used. This methodology is referred to 
as Qualitative System Dynamics (QSD) and provides a set of procedures 
for System description and analysis using influence diagrams which, 
although qualitative, gains structure and rigour from its mathematical 
origins. The approach is presented, a description gtven of the way it is 
taught, and comments made on the experiences gained to date from the 
teaching. 

1. INTRODLCTION 

One of the greatest challenges facing analysts involved in current 
managernent practice is how to provide managers with significant insights 
into complex problem situations with minimum resource input; particularly 
that of time. Whilst this is an old dilemma, it is increasingly taking on a new 
perspective as the complexity of modern managernent increases. First, it is 
becoming more and more apparent that conventional mathematical model-
building practice offen proves too slow, too restrictive and too inflexible in 
coping with the mixture of hard and soft issues, inherent in such problems. 
Further, the value added by the increased level of sophistication generated 
by a sizeable modelling effort is often questionable. Secondly, there is also 
an increasing awareness of the dangers associated with some of the current 
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methods aimed at overcoming these problems. In particular, the increased 
use of techniques arising out of predefined problem types (as characterised 
by operational research) tends to lead to a blinkered, detaiJed and 
reductionist approach to problem analysis. 

The premise of this chapter is that there is a growing need to develop 
general frameworks and methodologies rather than techniques, which can 
be taught to both managers and analysts and used by them to develop 
systemic overviews of problem areas. The objectives of such frameworks 
should be to provide a basis for structuring of concerns, to ajd problem 
exploration, to improve communication, and to act as a focus for 
transferring modelling and life experiences to new problem areas. 

This chapter is concerned with describing the development of a 
methodological approach for problem analysis which attempts to meet the 
above objectives. The method is based on System dynamics and arose out 
of experiences in teaching and applying this along with other Systems 
methods and operational research in both an academic and industrial 
environment. 

The origins of the method will be presented together with an outline of 
the procedures used and a description of its incorporation into courses at 
the Masters level in Business Administration at Bradford Management 
Centre. 

2. SYSTEM DYNAMICS, SYSTEM ENQUIRY AND SYSTEMS 
METHODOLOGIES 

The conception and early development of System dynamics took place 
during the late 1950s at the Massachusetts Institute of Technology 
(Forrester, 1958), and although early work was in the management field 
(Forrester, 1961) the subject became primarily known during the late 
1960s for its application at the macro level in urban and global modelling 
(Forrester, 1971; Meadows, 1972). Although macro applications are still 
in evidence (Forrester et al„ 1984), the scale of application has generally 
reduced and diversified during the 1970s. More recent work has seen an 
expansion in the development of its subtechniques and philosophy 
(Randers, 1979; Coyle, 1979; Wolstenholme, 1982; Richardson and Pugh, 
1983). 

The method as currently practised is still, however, essentially a 
socio-economic modelling technique concerned with the development of 
mainly large scale Simulation models for policy analysis. 

It is undoubtedly a powerful tool for providing insight into the behaviour 
and evolution of complex Systems, which is somewhat unique in 
encompassing the adaptive nature of feedback effects of such Systems. The 
procedure employed primarily represents a direct search for a model 
structure capable of providing a feedback hypothesis for observed System 
behaviour, and its ultimate objective is to move as quickly as possible to 
designing System policies by which to improve behaviour. Whilst this is a 
flexible and commendable procedure which can cope with subjective 
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relationships it does, nevertheless, still suffer from the problem of being 
time consuming and restrictively carried out in a totally quantitative mode. 
In the opinon of this author, however, it is considered to provide an 
underlying richness of concept which could be applied independently of 
Computer based Simulation. There are already some steps being taken 
within System dynamics along these lines, but these do not go far enough. 
For example, there is already much work being undertaken in the 
qualitative use of influence and causal loop diagrams (Roberts et al., 1983) 
for explaining system behaviour. However, this tends to be carried out 
within a self-contained framework and it is feit that there is a need to 
present it within a more open and accessible framework. 

Such frameworks exist in many fields and are created to facilitate 
stepwise procedures for structuring complex issues. These frameworks are 
usually qualitative since they must appeal to the füll breadth of the fields 
involved, but they often contain optional quantitative components. A good 
example of such frameworks are those used in business policy (Gluek, 
1976; Porter, 1980) for Strategie assessment of companies. Here, the 
subsumed quantitative component is usually a hard technique area for 
assessing alternative strategies, after their generat ion, and before the 
implementation stage. The use of system dynamics as an a l ternative to 
existing frameworks in the business policy field is currently being explored 
(Morecroft and Paich, 1985). 

The ultimate extension of the framework concept leads to the idea of the 
possibility of creating a general methodology for system enquiry, 
applicable across all fields. The search for such a general methodology for 
system enquiry has, in fact, been in existence for some time, with very 
limited success. It is the premise of this chapter that it is at this totally 
general level of enquiry that the concept of system dynamics as a 
framework for analysis should be aimed. It is suggested that the procedure 
of system dynamics provides an ideal basis around which to create a general 
system enquiry methodology. 

Systems enquiry is used here to define the whole field of investigation 
concerning the understanding and design of change in complex human 
activity Systems. This field is extremely large and although much attention 
has been increasingly focused on it in recent years, there remains a dearth 
of methods available to provide frameworks for anlaysis. 

A belief in the need for holistic thinking has existed for a very long time, 
and its advantages over reduetionist attitudes has been well expounded 
(Popper, 1957; Bertalanffy, 1968; Churchman, 1968). However, the 
development of meaningful methods by which to apply holistic ideas has so 
far proved very difficult, certainly in any practical rather than theoretical 
sense, although the literature is well sprinkled with attempts. These 
attempts come from a wide variety of diseiplines. Discounting for a 
moment the methods of system dynamics, there are those arising out of the 
isomorphic elements of Systems theory (Jenkins, 1969; Churchman, 1971; 
Hall, 1982), those resulting from attempts to expand and elevate 
mathematical problem-based techniques (Ackoff, 1972), those concerned 



Mathematical Teaching of Systems Thinking 101 

with the wider interpretations of cybernetics (Beer, 1972), those based on 
the me thod of Computer Systems analysis (De Neufville and Stafford, 
1980), those based on highly sophisticated structural modelling ideas 
(Linstone, 1978), and those based on purely qualitative diagrammatic and 
verbal procedures (Checkland, 1982). 

The difficulties in generating useful methods centre on the compromise 
required between the vagueness necessary to be sufficiently general and 
the precision needed to produce specific results. In terms of problem 
analysis this dilemma takes the form of a need to have a wide and flexible 
approach to facilitate structuring of Symptoms and problem identification 
whilst simultaneously requiring a narrow rigid approach to facilitate the 
creation and testing of remedies. 

Consequently, there continues to be extensive research into compromise 
approaches for System enquiry, based on a mixture of hard result-
orientated techniques and soft subjective methods, and current Systems 
work is characterised by the search for tmproved methodologies. 
Methodology is defined here as the Overall process of investigation, usually 
stepwise and iterative, by which concepts philosophies and theories can be 
expressed independently of the subject matter of the investigation and 
independently of the problem type to be considered. This use of the word 
methodology is not to be confused with its use in a specific technique sense, 
where it simply implies a list of Steps necessary for the application of that 
technique, for example the linear programming methodology. The ideal 
methodology, according to Checkland, must avoid the content-free 
methodologies derived from general Systems theory and the over-precise 
goal-orientated formulation stemming from System analysis. 

3. A SYSTEM METHODOLOGY BASED ON SYSTEM DYNAMICS 

The credentials of System dynamics as a System methodology have been 
explored elsewhere (Wolstenholme, 1982; Wolstenholme and Coyle, 
1983), and a stepwise procedure put forward for System descnption and 
problem exploration. The basic points which were made concerning the 
credentials of the System dynamics method as a Systems methodology were 
twofold. First, that the building blocks of rates and levels provided an 
excellent compromise between generality and usefulness for structuring 
Systems, and secondly that the concept of control and its effect on systern 
evolution over time was addressed. On the lirmtations side it was , first, 
suggested that there was a need to overcome the almost total emphasis 
placed on System processes in System dynamics, and that there exists a great 
need to recognise the role of the organisational structure of Systems in 
determining System Performance. This need is, in fact, becoming more 
widely recognised (Morecroft, 1984). Secondly, that there was a streng 
case for divorcing the System description and Computer analysis phases of 
System dynamics. 

It was with these ideas in mind that the following definition of a System 
dynamics as a two-part Systems methodology was suggested. 
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A rigorous method for system description, problem explorat ion and 
analysis of change in complex Systems, which facilitates and can lead to 
quantitative modelling and dynamic analysis for the des ign of system 
structure and control. 

The first part of this definition is referred to here as 'Qualitative System 
Dynamics' (QSD) and the second part as 'Dynamic Simulation Analysis'. 
It must also be noted that QSD itself is split into two stages. First system 
description and problem exploration involving the creat ion of 
diagrammatic models and, secondly. qualitative analysis involving the 
analysis of the diagrams. A stepwise procedure for stage 1 of QSD is 
presented in Appendix A. This procedure essentially restates the process 
of model conceptualisation used in system dynamics; however , it places 
more emphasis on the early recognition of System levels and or ientates the 
process towards a more conventional methodological form. The purpose of 
the procedure is to focus on influence diagramming for sys tem descript ion 
as a stand alone method, and to contrast its attributes relative to many of 
the less rigorous methods currently used in the system field. In the context 
of the whole spectrum of system enquiry, these description m e t h o d s ränge 
from poetry at one end to totally explicit computer-based algorithms at the 
other. The use of influence diagrams, which are almost independent of 
system behaviour considerations, is not totally unique in the system 
enquiry field (Eden etal., 1979). The main characterisation of the 
procedure is that it Starts at a high level of aggregat ion, and is a imed at 
facilitating both the elimination and introduction of resource states , as well 
as attempting to focus on the right level of resolution for the d iagram. The 
overall objective of the procedure is to produce the s implest diagram 
structure, capable of relating the key variables associated with the cause for 
concern specified. The procedure is close to that r e c o m m e n d e d by a 
number of system dynamics practitioners for use in initial problem 
structuring, where both knowledge of the system is poor and a basic 
feedback hypothesis does not exist. In other words its final object ive is to 
uncover any feedback loop structure. 

The second stage of the procedure relates to the qualitative analysis of 
the derived diagrams. The definition of the steps for qualitative analysis 
suggested here may be viewed essentially as an at tempt to replicate the 
basic procedures of system dynamics policy design, but without resorting 
to Computer Simulation. The important differences are that more attent ion 
is paid to the organisational implications of the system, and that the whole 
process of the analysis is slowed down and the degree of resolut ion of the 
analysis is increased. This is a imed at increasing communica t ion and 
understanding of the system to assist the role of the System actors and 
owners in designing and implementing change for themse lves . 

A four-phase procedure is suggested for qualitative analysis and these 
phases together with the main steps involved in each are summarised in 
Appendix B. The major phases consist of static analysis, the identification 
of control issues, the dynamic implications of the exist ing system structure 
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and the identification of factors for improving System Performance. Many 
of the steps are self-expücit and are laid out to facilitate the application of 
the methodology by people who are not familiär with system dynamics. 
The details of each step will not be repeated here in the text, but discussion 
will be made of the general structuring of the procedure. 

The first three phases are designed to make analysts stop and think 
about the system as is, rather than jump headlong into system redesign. 
The first of these stages focuses on creating a static feel for the 
process/organisational balance of the system and is geared to focusing the 
system actors' attention on the process perspective. The second tries to 
examine the existence or otherwise of control in the system and to 
categorise control, where present, by its variables, mechanisms and 
frequency of application. Only during the third phase is it suggested that 
true dynamic analysis and hand Simulation of the structure be attempted. 

The fourth and final phase of the procedure is concerned with changing 
the system. It is at this point that we are faced with the problem of how. in 
the absence of a quantitative test procedure. objectively to improve system 
Performance and to overcome the original cause(s) for concern associated 
with a system. This problem is, of course, not unique to this particular 
approach and is a common difficulty encountered by all soft system 
methodologies. In fact, by having used system dynamics as a basis for 
structuring the system it could be argued that there exists a much stronger 
basis for analysis than in the case of many other System methodologies and 
that this is where system dynamics scores an enormous advantage over 
other methods. There are two reasons for this, both associated with the 
relatively high level of rigour attached to the diagramming procedure, 
which has arisen out of its Simulation ongins. First, the level of 
communication facilitated by the diagrams is high and they are very 
orientated towards encouraging self-diagnoses and self-help amongst the 
system actors and owners. Secondly, there exists a whole body of proven 
general results for system dynamics structures which can be used as a basis 
for directing change in Systems. Whilst it is not suggested that such results 
will have a relevance in all Systems and that there are. undoubtedly, 
dangers in the indiscriminate use of them, it can be argued that there is, in 
the majority of practica! Systems, sufficient scope for improvement to 
justify their use. This idea of the identification and transfer of genenc 
components and results between dissimilar Systems (isomorphism) is one 
of the most deeply established concepts associated with the development 
of system methodologies (Von Bertalanffy, 1968) and is an area being 
strongly pursued at present in the System dynamics field (Morecroft and 
Paich, 1985). 

It is no doubt. likely that all system dynamics practitioners would. lf 
asked, be able to produce a good and useful breakdown of generahsed 
results that could usefully be transferred between Systems. The list 
identified in phase IV of the methodology here is neither claimed to be 
sufficient nor definitive as it is still under development. The list presented 
concentrates on the fundamentals of improving any mismatch between the 
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Organisation structure and process structure of the system, in highlighting 
the need for control, in defining how control may be designed or improved 
in terms of objectives and discrepancies, and by reducing delays in 
information and hence monitoring needs of the System. It is further 
suggested that a search is made within the diagrams developed for 
subconscious feedback. That is, longer term feedback loops which often 
exist between system variables, but are not directly perceived as 
important by system actors because they perhaps exist at a different level 
of aggregation or on a different time-scale from the loops under scrutiny. 
Finally, it is suggested reiteration takes place, and that the dynamic 
implications of any new structures defined are examined as in phase III of 
the procedure. 

4. TEACHING THE METHODOLOGY 

Two courses have been developed based around the two parts of the 
methodology defined and these are each presented in eight-week modules 
of two hours per week to students at the Masters level in Business 
Administration. The first course is entitled 'Systems Methods for Strategie 
Thinking' and is centred on the use of QSD. The second is entitled 
'Dynamic Simulation Modelling' and is presented to enable the more 
quantitative students to develop Simulation models for the diagrammatic 
models created in the first course. Outline syllabuses for these courses are 
presented in Appendices C and D respectively. Since the latter course is 
of a more conventional nature, emphasis here will be placed on a 
description of the former. 

The content of the first two weeks of the course centres on reviewing 
the need for Systems methods in managernent, describing the origins and 
general philosophy of holism and the difficulties of creating methods 
capable of applying holistic coneepts to managernent in any meaningful 
and acceptable way. Methods currently in use for system diagramming, 
system Classification and for defining System boundaries are explained. The 
diagrams presented here ränge from those of the non-conventional one-off 
type, through Venn diagrams, to flow block diagrams and Systems maps 
and on to algorithmic diagrams. The concept of Systems methodologies 
are introduced at this stage and an exercise undertaken using one such 
methodology. 

In weeks three and four the methodology of QSD is introduced and 
exercises used which build up to providing experience in its ultimate use; 
that is, in providing a means for analysts and managers to create initial 
inroads into new problem areas. To achieve this, exercises are given in three 
degrees of speeifieness. The first one requires influence diagrams to be 
drawn and analysed based on comprehensive and unambiguous written 
descriptions of system variables. The second requires an influence 
diagramming structure to be created from typical, slightly ambiguous 
written descriptions of problem situations, but with some help given in 
Ihe identification of the most important system states to be represented. 
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The third type of Situation presented requires that a diagrammatic QSD 
model be created and analysed from a typically vague remit of the type 
encountered in practice, where senior managers express a general cause for 
concern and require guidance in Clearing their thinking, rather than 
definitive answers. It is this type of Situation that current management 
training pays üttle attention to, the belief being that if the analysts have 
their array of techniques well understood, then they will cope. In fact, in 
both the real world and in the classroom Situation, experience shows that 
this is the type of Situation which analysts are least able to cope with and 
one where panic most easily sets in. The main reason for such feelings is that 
original thinking is demanded and this is not an attribute that too many 
people can call upon without help. Even with heip from methods such as 
the one described here, most students initially still rely entirely on instinct 
and experience. It is generally found to take some time before the taught 
framework is established as a catalyst for instinctive thinking. Once this 
has happened progress in problem analysis is greatly improved. 

Obviously analysis is still more effective the better the knowledge the 
Student has of the system in which the problem lies. Consequently, apart 
from case study presentations of QSD, a large part of the remainder of 
the course is taken up with encouraging students to apply the methods to 
Systems within their own experience. Such exercises are invaluable 
because, ultimately, it is only when students demonstrate to themselves 
that new insights can be generated, into what were previously thought of as 
familiär and known Systems, that the method is really proved for them. 
Taught methods are seldom put to this test as there is a risk involved, and 
consequently the credibility and total acceptance of the methods is never 
achieved. 

Experience with the course here indicates that confidence in applying it 
does, in fact, depend on certain factors. The most important of these seems 
to be the degree of previous experience of management and work 
situations in general by the students. That is, appreciation is higher when 
they have seen at first hand the degree of 'mess* associated with 
management problems, and have experienced the difficulties of being 
objective and confident in identifying and carrying through relevant 
analysis. Acceptance of the method additionally depends on having an 
open mind, which perhaps simply means an intuitive appreciation of 
holism. 

The true test of any methodology is, ultimately, that of whether it 
becomes a totally subconscious thing to do and affects thinking without 
awareness of this at the time of application. This is almost the case with 
most variants of the scientific method as practised in pure scientific 
research, and we are obviously a long way from this with the development 
of methodologies in other softer fields of enquiry. However, most students 
involved with the methods descnbed here would say that there are two 
underlying features of the procedure which are most strongly retained and 
used at a subconscious level. The first of these is the system process 
perspective captured by the approach, which is often very new to many 
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students. The second is the idea of the need to control process in an 
integrated way across organisational boundaries describing areas of 
responsibility. These factors are, in fact, the fundamentals of system 
dynamics originally perceived by Forrester, and the success of the methods 
in communicating these ideas goes a long way to eliminating a strong 
teaching concern which existed at the design stage of the courses. This was 
whether, in fact, it was possible to teach what was effectively a method of 
System structure arising out of Computer Simulation Software, without 
recourse to the Computer Simulation Software itself, and whether in fact an 
ability with influence diagram analysis could only arise out of previous 
experience with fully quantified Simulation models. This issue has not 
proved to be a problematic factor at all, and the qualitative nature of the 
course has additionally assisted in increasing the scope of communication 
of ideas associated with process and control by encompassing non-
management science students to undertake it. 

The latter point is reinforced by the number of such students then 
interested in undertaking the second course, which introduces them via a 
fairly easy transition into the arena of Simulation modelling. The main 
purpose of the second course is, in fact, to encourage quantative analysis 
of the problems developed and analysed qualitatively on the first course. It 
is hoped eventually, by comparing the initial qualitative analysis of 
these problems with the final quantitative analysis, to be able to quantify 
the magnitude of the value added from quantitative analysis. 

5. CONCLUSIONS 

This chapter has suggested that there is a need to expand the role of 
managernent science in the area of Strategie problem analysis and has put 
forward an holistic methodology based on the coneepts of system 
dynamics for this purpose. Experience with teaching this methodology to 
Masters students in Business Administration would suggest that there is 
much potential in the approach and that it forms a good compromise 
between precision and flexibility, in keeping with the current problem 
solving needs of managers who operate in an increasingly complex and 
subjective environment. 

APPENDIX A: A STEPWISE METHODOLOGY FOR QSD (SYSTEM 
DESCRIPTION AND PROBLEM EXPLORATION) 

(1) Recognise the key variables associated with the perceived cause(s) of 
concern in the system and with the remit provided for the enquiry. 
Where possible, examine the behaviour of these variables over time 
and define a time hrorizon for the analysis. 

(2) ldentify some of the initial System resources associated with the key 
variables. 

(3) ldentify some of the initial states (levels) of each resource using a level 
of aggregation compatible to the time horizon defined in (1). 
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(4) Construct physical flow modules associated with each State of each 
resource, containing the physical processes or rates which affect these. 
(A module must contain at least one resource State and one rate.) 

(5) lf more than one State of a resource is involved cascade flow modules 
together to produce a chain of resource conversion or transfer. 

(6) For each module or set of cascaded modules identify the intra module 
behavioural information and control (policy) links by which the levels 
affect the rates. 

(7) Identify similar behavioural and control links between modules of 
different resource types. For complex situations this should be carried 
out for small groups of resources at a time within a defined theme and 
the resultant diagrams reduced to produce the simplest possible, 
consistent with relating the key variables of the investigation. 

(8) Identify any new states of existing resources, or new resources, which 
affect the rates of the modules created or new key variables, and add 
these to those recognised at (1) and (2) . Reiterate if necessary. 

APPENDIX B: A STEPWISE METHODOLOGY FOR QSD (MODEL 
ANALYSIS) 

Phase I Static analysis of the model structure 
(1) Confirm with the system actors that the model relates the major 

system variables associated with the original cause for concern. 
(2) Identify uncertain contentions or highly subjective relationships 

between defined variables. 
(3) Group variables into sets characterised by existing areas of functional 

responsibility (such as common accountability) and superimpose Venn 
diagrams to delineate the boundaries of these. 

(4) Identify delays: identify the order of magnitude of delays in both 
physical Operations and in the retrieving or perceiving of 
information. 

Phase II Identify control issues 
(1) Search for control framework. Classify information links as 

behavioural or control based. (Behavioural links are defined as the 
means by which Systems adapt themselves in the long term if left to 
their own devices, whereas control mechanisms are defined to 
represent the actions of humans aimed at changing system 
Performance.) 

(2) Classify resources by their control functions. If control links exist, 
identify the resource stream which is being controlled (the controlled 
resource) and the resource stream which is acting as a Controller (the 
Controlling resource). 

(3) Identify the particular variables within the controlled resource, 
through which control is implemented and identify who is the 
Controller (i.e. who has organisational responsibility) of each of these 
controlled variables. 
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(4) Clarify the mechanisms of control, i.e. identify the ränge of control 
policies for each controlled variable; identify the ränge of control 
policies for each controlled variable; identify the sources of 
Information feeding the policies and the intermediate processes 
through these data pass; identify the mechanism by which the policies 
convert Information into action. 

(5) Determine the frequency of control implementation, that is, can 
control be instigated on a real-time continuous basis or only at certain 
review points? Is the frequency of implementation of control restricted 
by the speed of information retrieval or by organisational factors (e.g. 
committee meetings)? 

Phase III Dynamic implications of the model structure 
(1) ldentify the major feedback loop structure of the model. 
(2) For each feedback loop carry out a hand-simulation to assess its likely 

behaviour; first start by changing each of the controlled variables to 
extreme values of the policies defined for them and secondly by 
changing each of the uncontrolled (exogenous) variables, again to the 
extreme ränge of values likely to be experienced for them. 

(3) Is there any evidence to suggest that the system will be subject to any 
well known counter-intuitive or self-regulating models of behaviour? 

Phase IV Identify factors likely to lead to improved system Performance 
(1) Can the Organisation structure be changed to better match the process 

structure, or vice versa? For example, could one person be given 
responsibility for more than one controlled variable in a particular 
resource stream? If this is not possible can further control be designed 
to help resolve conflicts? 

(2) Do overall objectives exist for the whole or parts of the system 
defined and do these conflict? 

(3) Can control be designed for variables that are presently uncontrolled 
or only subject to behavioural control? 

(4) Does the concept of a desired State exist for each of the actual State 
variables in the System and are critical values defined for actual states? 
If so, are they themselves variables or constants? Does the concept of 
measuring discrepancies between actual and desired states exist? 

(5) For each controlled variable within each resource flow is account being 
taken, in its control policy, of the content of upstream and downstream 
states of the resource. 

(6) For each controlled variable are there any information flows that are 
very protracted and can these be short-circuited; that is can the system 
be made more responsive and is this desirable? It may be that 
attributes of the controlled resource could be monitored whilst it is 
within the Controllers sphere of responsibility rather than outside. 

(7) Examine the information retrieval and monitoring infrastructure of 
the system to make it compatible with the control requirements 
identified. 
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(8) Examine the likely links which might exist between variables in the 
system which are currently perceived as being totally independent. 

(9) For each new defined policy, or change in System structure, created 
either intuitively or from the previous steps, repeat the process of 
defining its dynamic implications given in phase III. 

APPENDIX C 
Course 1: Systems methods for Strategie thinking 
Objective: To develop qualitative skills in interpreting and describing 
Systems for the purpose of identifying, understanding and solving real 
world management problems. 

(1) The need for system methods 
An examination of the difficulties of current management techniques 
and practices for problem solving. A presentation of the philosophy of 
holism and its relevance to managers in developing an integrated 
viewpoint across functional boundaries. lntroduction to methods for 
system description using diagrams. 

(2) Current methodologies for system enquiry 
An overview of practica! methods for applying system ideas. 
Application of one such method. 

(3) The dynamics of Systems 
Demonstration of the importance of examining Systems in terms of 
their behaviour over time. The relationship between time behaviour 
of Systems and their dominant operating policies. The control of 
Systems via information feedback structure and policy. 

(4) Qualitative System Dynamics (QSD) 
Presentation of System dynamics as a method of system description 
and qualitative analysis. 

(5) The use of QSD in real life problem analysis (I) 
Presentation of small case studies using QSD. 

(6) Applications Workshop 
Use of QSD in analysing students own or set problems. 

(7) The use of QSD in real life problem analysis (II) 
Presentation of case studies involving the use of QSD in highly 
complex. multiple ownership system. 

(8) Course Review 
Comparison of merits of the methods presented both relative to each 
other and relative to management needs and alternative approaches. 

APPENDIX D 

Course 2: Dynamic system modelling 
Objective: To develop quantitative skills in system modelling for the 
purpose of designing system controls for improving system behaviour over 
time. 
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(1) Principles of dynamic Simulation I 
A description of how continuous Simulation Software (DYSMAP) 
operates and the construction of basic level, rate and auxiliary 
equations from influence diagrams. 

(2) Modelling demonstration 
Using the Computer demonstration of the construction and running 
of a simple dynamic model to test alternative control options. 

(3) Workshop 1 
Construction of a Company model in groups. 

(4) Principles of dynamic Simulation II 
A description of more advanced functions for dynamic modelling. 
Model Validation. 
Workshop II 
Design of control experiments for the Company model. 

(5) Principles of dynamic Simulation III 
A description of the use of dimensional analysis and the dynamics of 
delays. 
Workshop Hl 
Construction in groups of a set model of students' own choice. 

(6) Case Study 1 and Workshop IV 
First presentation of a system dynamics application plus further work 
on model development. 

(7) Case Study II and Workshop V 
Second presentation of a system dynamics application plus further 
work on model development. 

(8) Course review 
Open discussion. 
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SU MM AR Y 

It is evident that in atternpting to model phenomena using Newtonian 
mechanics, many students encounter difficulties through their own lack of 
physical intuition. Some attempts can be made to alleviate the problem by 
setting up impressive demonstrations which make füll use of modern TV 
and video techniques. Amongst others, the Open University in particular 
has met with considerable success in this area. However, these techniques 
are usually expensive to devise and to mount, and this acts as an inhibiting 
factor for many (smaller) institutes which have neither the equipment nor 
the technical support readily available to prepare, or even to show, them. 

Such demonstrations are often remote from the students, and in this 
micro-age the initiative for innovative techniques in model Validation is in 
danger of moving away from the lecturer. This chapter puts forward details 
of well-proven experiments and ideas for practical demonstrations which 
work, and which will be appreciated by students on GCE Advanced level 
courses as well as by undergraduates. A number of these experiments take 
a fresh look at very familiär problems, such as a ladder leaning against a 
wall and cylinders rolling down an inclined plane. They use simple models 
which may be constructed from common articles without the aid of a 
technician, and they seek to illustrate the main coneepts of dynamics, such 
as force, momentum and energy. In many cases the students would be 
encouraged to take an active part in the demonstration thus beconüng 



116 Mathematical Modelling—Methodology, Models and Micros 

closely involved in working mathematics, and appreciate that this can be 
fun. 

1. INTRODUCTION 

Over the past few years there has been a fall in the number of students 
applying to read for a degree in physics and related subjects at universities 
and polytechnics. This is mainly because there has been a decline in the 
interest shown in these subjects by pupils in schools. This has also led to the 
admission of students to undergraduate courses in mathematics who have 
not been exposed to the modelling of physical phenomena using 
Newtonian mechanics. The exciting course developments in further and 
higher educalion, through the introduction of aspects of mathematical 
models and modelling at various stages in the undergraduate programme, 
have tended to concentrate upon such topics as population growth, traffic 
control and epidemiology. Of course, these areas are eminently suitable for 
inclusion in applied mathematics courses, but this has often been achieved 
at the expense of mechanics. which may have been neglected of late, since 
the examples used were always rather too stereotyped and unimaginative. 
This combination of circumstances has meant that, when it has been 
necessary to introduce students to concepts in mechanics, they have 
encountered difficulties through their own lack of physical intuition. An 
intuitive feel, in this sense, is acquired through experience and exposure to 
the right concepts and associated examples over an extended period. 

Model Validation is a vital feature of the mathematical modelling 
process, and whilst the topics mentioned above demonstrate newer uses of 
mathematics (Lighthill, 1978), it is evident that model Validation can be 
impracticable. Even though expensive equipment may be provided, lecture 
demonstrations in real time are not always possible; for example, a time 
scale of weeks or months is common in many models in epidemiology. This 
chapter serves as a reminder that there are areas of Newtonian mechanics 
for which the model can be validated easily, directly, instantaneously and 
with some effect, without the necessary use of complicated apparatus. 

One way in which ideas have been successfully reinforced is by 
illustrations which utilise modern TV and video techniques. The Open 
University, in particular, has met with considerable success in this area, and 
the increasing availability of VCRs indicates that video material does make 
a valuable contribution to the methodology of the teaching of mathematics. 
The demonstrations shown on TV and video are certainly impressive, but 
they are one-off experiments remote from the viewer, and therefore they 
are only partially successful as an aid to understanding. The presentation is 
often such that an element of contrived surprise is engendered, similar to 
that which is observed on the successful Performance of a trick on a TV 
magic show. The latest developments have incorporated interactive 
features, through which the viewers can pace their learning by 
accompanying texts similar to those already available in audio tape 
learning Systems (Open University, 1984). These TV and video packages 
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depend upon considerable Support both in terms of equipment and 
materials, and of technical staff. 

The demonstrations in this chapter show that Newtonian mechanics is an 
area in which the live experiment can be more effective, and for which the 
expense of TV and video packages is unnecessary. The impact of the real 
time demonstration can be enhanced by monitoring the reaction of the 
students, and varying the topics covered and the manner in which they are 
presented to suit the particular audience in question. 

The recent introduction of an interactive element into video packages is 
a natural development of a technique which is used to good effect in the 
Computer Simulation of physical phenomena. The use of readily availabie 
Software packages on a microcomputer is Seen by many educationalists as 
the latest in a sequence of ultimate teaching aids. Certainly, the MIME 
project at Loughborough (Bajpai etat., 1984) lends support to this view, 
with packages developed which cover the whole of one GCE A-level 
Mechanics syllabus. The establishment of microcomputer laboratories for 
the teaching of mathematics enjoys the support of funding agencies in the 
UK, and there are interesting developments in this area, for example, at 
Birmingham University and Manchester Polytechnic. A wealth of 
experience has accumulated over the several years of Operation of 
CATAM at Cambridge University, and the packages developed for the 
teaching of topics such as Fourier analysis show a very high level of 
expertise and are amongst the best so far availabie (Harding, 1984). The 
main feature of these computer-simulated experiments, and the associated 
Software, is that the Student can vary the parameters of the problem and 
can therefore learn in a structured way, through experiments. However, 
great care must be exercised in interpreting the results of Computer 
modelling and Validation persists as a problem. The exciting graphics 
qualities and the skill of the programmer invite the admiration of teacher 
and Student alike, but give no feel for the problem and are often at the 
expense of a real understanding of the underlying coneepts. In addition, 
despite its interactive nature, the total experience of Computer Simulation 
remains remote from the Student. 

This chaper proposes ways in which the initiative for innovative 
techniques can remain with the teacher. The real time lecture 
demonstration should retain its important role in the teaching programme. 
and should shrug off its old-fashioned image. The presentation and the 
skilful managernent of the Royal Society Christmas lectures is an 
instruetive case in point. So, too, are the physics lectures of the Molecule 
Club at the Mermaid Theatre, and also the several set piece 
demonstrations rudely given at summer schools of the Open University. 
The demonstrations described in this chapter are a small sample of those 
that can be provided within the spirit oi this Chapter. They should be given 
in an atmosphere in which the audience will appreciate that there are 
opportunities for things to go wrong and will eagerly antieipate seeing how 
the actors cope with disasters. 
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2. THE DEMONSTRATIONS 

In making our choice we had in mind a number of criteria which must be 
satisfied. In discussing these at greater length we attribute no particular 
order of importance. 

(i) They must be simple and practicable, requiring only cheap, 
recognisable, and easily obtainable materials and equipment, and the 
minimum of technical support. 

(ii) Collectively the models must provide a good coverage of the basic 
principles of Newtonian mechanics. The desirability of model 
Validation, and the benefits of predicting behaviour, should be 
apparent from the demonstrations. 

(iii) Depending upon the audience and the time available, there should be 
possibilities for vanations and extensions. 

(iv) Opportunities for Student interaction and participation must be 
provided. Whenever possible, they should be encouraged to 
experiment themselves. This approach to mathematics must be 
entertaining as well as instructive, and seen to be so. 

We believe that all these conditions, at least to some extent, are met by the 
following five exercises: 

(1) Slipping ladders. 
(2) Beer can racing. 
(3) Falling chains, 
(4) Swinging oranges. 
(5) Free falling oranges. 

We now describe these in detail. 

2.1 Slipping ladders 
Apparatus: a short ladder, a smooth wall and a Willing volunteer! 

The applied mathematician, reared on a traditional diet of statics, can 
recall all the common examples of ladders leaning against walls, with 
various convenient coefficients of static friction to allow a deterministic 
Solution of the problem. When we first decided to include this 
demonstration, we intended to show how the effect of friction could be 
modelled, and the part it plays in verifying Newton's first law. 
Stage 1: The ladder is leant against a smooth wall, as shown in Fig. 1, so 
that it just stays in place. It is easy to measure the angle of inclination to the 
horizontal or, giving an estimate of the limiting coefficient of static friction, 
/i, between the floor and the ladder 

f = j cot a 

Stage 2: The ladder is now inclined at an angle 9 (6 > or), Fig. 2, and the 
foolhardy volunteer is persuaded to climb it. Then we can predict when the 
ladder should Start to slip. 
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Smooth 

Friction 

Fig. l 

Fig. 2 

If the volunteer has mass M and climbs a distance x up the ladder, of 
mass m, before it Starts to slip then, resolving forces and taking moments 
appropriately yields 

lf, in stage 1, tan a < 1, then setting 9 to 45° in stage 2 leads to x > /, so 
that, for a ladder of length 2/, the unfortunate volunteer will get over 
half-way up before slipping occurs. Similar results hold for values of 8 other 
than 45°. 

What happens if the floor is smooth and the wall is rough, as in Fig. 3? 
An experiment should confirm the intuitive result that, since the only 

horizontal force acting is the normal reaction at the rough wall, then the 
foot of the ladder must move away from the wall, regardless of the 
magnitude of the frictional force at the wall. 

In theory, these demonstrations could be said to be as easy as falling off a 
ladder! However, model Validation is not always such a simple matter. The 
idealised smooth floor is not as common as one might expect, and our 
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Smooth 

Fig. 3 

experience suggests that smooth walls are even rarer, for we met with little 
success in our attempts at the Validation of this particular model. This 
confirms the importance of Validation, and the necessity of a critical 
appraisal of accuracy and reliability of a model. For the authors, it threw 
considerable doubt on the validity of the traditional model of limiting 
friction. 

2.2 Beer can racing 
Apparatus: A plank or board of minimum width 0.5 m, minimum length 
1 m, assorted unopened beer or lager cans, of various sizes. 

In these experiments we investigate the significant parameters of 
rotational motion of rigid bodies rolling down an inclined plane. We can 
show that the time taken for a uniform cylinder to roll down a given slope is 
independent of its size and mass, and depends only upon how that mass is 
distributed (i.e. its radius of gyration). The board acts as an inclined plane, 
and it must be sufficiently wide to accommodate two cans rolling 
simultaneously, in parallel, down the line of greatest slope. The plane is 
inclined by propping up one end, perhaps with some old video cassettes, to 
give an angle of approximately 20° to the horizontal. Of course, this may 
be varied to some advantage between, say, 10° and 45°. We rely on direct 
comparison to validate our models, thus avoiding the need for accurate 
measurements. 

Figure 4 shows a uniform rigid body, such as a cylinder, sphere or hoop, 
rolling, without slipping, down a plane inclined to the horizontal at an 
angle or. 

It can be shown (ehester, 1979), that the acceleration x of the body 
down the slope is given by 

. a2 

X (a2 + k2)8 
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Fig. 4 

and its speed x, by 

where a is the radius of circular cross-section, k is the radius of gyration, 
about the axis of rotation, g is gravitational acceleration and D is the 
vertical distance fallen by the body, so that D = x sin a. 

Noting that k is directly proportional to a, it is helpful to write 

s(k) 
2a2 

(a2 + k:) 

so that x1 = gD s(k), and to construct a table of values for s(k) for the 
conventional rolling bodies. 

Table 1 

Body (klaf s(k) 

Solid sphere 2/5 10/7 
Solid cylinder 1 1/2 4/3 
Circular disc J 

1/2 4/3 
Hollow sphere 2/3 6/5 
Hollow cylinder 1 ] 1 
Circular hoop | 

1 

The maximum values of x coincide with those of s(k), and so we observe 
from Table 1 that the fastest rolling object should be a solid sphere. and the 
slowest a hollow cylinder or a circular hoop. 

There are many possibilities availabie to the demonstrator, so that it is 
easy to adopt an approach suited to the audience. One favoured method is 
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to persuade the volunteer, if sufficiently recovered from the activities on 
the ladder, to participate in a slow beer can race, namely to select one of 
two similar cans which will take longer to roll down the slope. You may 
allow a trial run, with two unopened cans, and then invite the gullible 
volunteer to choose a can, and to mark it accordingly. Now empty the other 
can and victory is assured since the empty can must be slower. 

There are countless variations, particularly if you have a wide selection 
of rolling bodies. Before embarking on the experiments, the audience are 
invited to suggest the significant parameters, such as mass, diameter, and 
so on, and a careful sequence of trials should gradually eliminate most of 
them. As a further experiment planes, inclined at different angles, confirm 
that it is the parameter D that is significant for two identical bodies. We 
would also like to point out that experiments with sundry Guinness 
Containers led to the conclusion that since s(k) = 12/7 for a cube, then a 
rolling cube should be the swiftest—this confirms the necessity for model 
Validation! It is also possible to investigate the relevance of friction. 
However, unless the surfaces involved are exceptionally smooth, the 
speeds developed are rather high, and this can impair the quality of the 
beer. 

2.3 Falling chains 
Apparatus: One set of bathroom scales, one set of post-office-type scales 

with a large dial, and various lengths of heavy chain. 

A layman may have an intuitive idea of momentum through experience of 
the fairground exhibitions of test your own strength, see Figure 5. He may 
not appreciate that as a mathematical concept, but he may be aware that as 
momentum is destroyed rather quickly, then an increased force results. 
This short demonstration aims to show that force, acceleration and 
momentum are related through Newton's third law. 

Initially, it is desirable to persuade a volunteer to jump up and down on a 
set of bathroom scales, to demonstrate that this gives a heavy reading (and 
heavy breathing) compared with the static case. For the main 

hg- 5 
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Scale pan 

Fig. 6 

demonstrations, the chains are weighed carefully on the post-office-type 
scales. The audience is then asked to estimate the dial reading when the 
chains are allowed to fall freely onto the scale pan, Fig. 6. 

The theory (Ramsey, 1962), predicts that the maximum scale reading 
will be three times the total weight of the chain. The experiment is 
concluded by marking this particular point on the scale, and allowing the 
chain to fall again. 

This simple experiment is very effective, and has been much appreciated 
by students (Thorpe, 1984). It uses the minimum of apparatus, which does 
not need fine tuning to make it work. 

2.4 Swinging oranges 
Apparatus: Two large oranges of equal mass, length of string 

(approximately 2 m), skewer or small screwdriver, paper clips, 
metre rule. 

The authors have come across a number of interesting examples of normal 
mode motion (Fendrich, 1982), but the one described below, based 
on an idea gleaned at Brighton Polytechnic (Bell, 1977), has the great 
merit of simplicity. It validates the natural frequencies and corresponding 
normal modes of a model of a double pendulum. This is prepared by 
threading the string through the core of each orange, using the skewer. 

Ensure that one orange, o, , is fixed at the mid-point of the string, and the 
second orange, o:, at one end. Paper clips provide a useful means of fixing. 
The pendulum so formed is suspended from a fixed point A, so that it can 
swing freely in a vertical plane, see Fig. 7. If necessary, the weary volunteer 
may be coaxed to stand on a desk to act as a fixed support. In practice, 
several members of the audience may be encouraged, with a little 
guidance, to undertake the complete experiment. 
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A 

Fig. 7 

A füll treatment of the theory, using Lagrange's equations, appears in 
Chester (1979). A more elementary, yet more tedious method can be used 
to derive the following equations of motion, which have been linearised on 
the basis of small oscillations. 

(m, + m2)l\Q\ + m2l,l292 = (m, + m2)gll9-L 

m2Ul29^ + « 2 / 2 8 2 = -m2gl292 

For our problem, we have 

«1 = m2 and /, = l2 = l, say, 

so that, in matrix form, the equations become 

- 2 - 1 
- 2 2 

so that the natural frequences nu n2 of the system are given by 

n\ = {2- V 2 ) | a n d n i = (2 + <J2)j 

with corresponding normal modes 

[ 1 V 2 ] T
 and [ 1 - v 2 ] T . 

First, random motion is illustrated by releasing each orange from a 
convenient point distinet from the position of static equilibrium (Fig. 8). 

It is important to keep the string taut. Release from rest should yield a 
comparatively complex motion, to start with. Next release o, from a point 
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Fig. 8 

at a horizontal distance of 0.25/, a n d o 2 0.67, from the vertical t h r o u g h / i , as 
shown in Fig. 9. 

The oranges should Swing in phase , with approximate simple harmonic 
mot ion . Repeat the process , asking a Student to note the time, say Tu of 
five comple te oscil lations. Now release o, from a point at a distance 0.25/ 
to the right, and o 2 0.35/ to the left, relative to the vertical through A, as in 
Fig. 10. 

Fig. 9 
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0.35f 

Fig. 10 

The oranges should again exhibit SHM, but in anti-phase and with a 
shorter period. Again, the time 7\ for five oscillations should be recorded, 
and the required result should be that 

T, n2 

~ = - ^ 2 A 
I z n, 

It may come as a surprise to see that a grossly simplified model can be 
validated so well by such crude apparatus. A further surprise may be 
achieved by eating one orange, and continuing with the next 
demonstration. 

2.5 Free falling oranges 
Apparatus: As in section 2 . 4 , with an orange and, perferably, one rigid 

rod. 

The object of this demonstration is to illustrate the concepts of energy 
conservation and Newton's first law by demonstrating aspects of the 
motion of a simple pendulum, and that of projectiles. The orange is 
suspended from A, as before, Fig. 11, the points B and C being vertically 
below A. The arrangement allows three modes of demonstration to be 
performed, each dependent upon the speed, u0, of the orange at the point 
C. If / is the length BC, then the three modes are given by Green (1948), 

(i) "o_^ \!2gl two simple pendulums, or 
(ii) V 2 g / j S g l motion in an arc of a circle, and then projectile 

motion, Fig. 1 2 , or 
(iii) u0 3* v'5g/ motion in a complete circle centred at B. 



P e n d u l u m length,, 

P ro iec t i l e s t age 

• • 4 • 

/ P e n d u l u m length l 

Fig. 12 

The three modes can be illustrated in turn, the point B being set up as an 
obstruction using a horizontal rod. This is a similar approach to that 
described by Galileo in a very neat experiment (French, 1971). The 
arrangements for our apparatus, and a discussion of the experiment on this 
scale, were suggested by Trapp (1983). 

Mode (i) is easily achieved by keeping the string taut and allowing the 
orange to fall, along a circular arc, from a height h < I. see Fig. 11. For 
mode (ii), the demonstration is most effective if the system is set up so that 
the orange passes through the point B during the projectile stage of the 
motion. It is straightforward to show that this may be achieved by releasing 
the orange from a position for which the string is horizontal and taut, and 
the point B fixed so that the ratio AC:BC is (2 + \ 3)/2, see Fig. 12. Using 
a string of length 2m, then BC = 1.07m and the angle et is approximately 
35.3°. These values may sound rather precise, but it is not too difficult to 
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set up the correct initial conditions and to obtain a successful conclusion. 
Finally, mode (iii) is carried out simply by giving the orange a sufficiently 
high speed, u„ at the point C. 

3. FURTHER DEVELOPMENTS 

The preceding discussion of practical demonstrations raises the question of 
which other areas of mechanics can be validated in the lecture room. 
Several Standard undergraduate texts, such as ehester (1979), and Ramsey 
(1962) contain interesting examples, usually in the exercises which can be 
readily adapted for live presentation to suitable groups of students. Ideas 
gleaned from these sources include the following. 

Orbits: motion under a central force, producing elliptic planar orbits, and 
also linking this with circular motion has exciting possibilities (Ramsey, 
1962). It must be said in this case, where the interactive feature is not 
practicable, the TV/video presentation has some merit, for example, in 
discussions of Halley's Comet (The Open University, 1983). 

Impact of spheres: the texts Synge and Griffith (1949), Ramsey (1962) 
describe experiments based on Newton's cradle which can either be used to 
verify conservation laws or, perhaps, to find the coefficient of restitution 
between two oranges. Practical considerations may suggest setting up an 
impact by means of two pendulums. Oranges or tennis balls can be used, 
and in the former case it is recommended that any fruit be placed in a deep 
freeze prior to the experiment! 

Pulleys: arrangements of pulleys can be set up, not with the sophistication 
of Fletcher's trolley experiments, but more on the lines of the epic saga of 
the desperately unfortunate builder's labourer (Hoffnung, 1958). A 
suitable pulley rope and a household bücket can be used to good effect 
here. 

Rockels: motion along a horizontal model railway track, using a small gas 
canister of the sparklets types containing a propellant, will provide an 
effective demonstration of Newton's third law. 

Circular motion: the populär and original Open University TV 
presentation of hot wheels racing cars looping the loop is much more 
exciting in real time. However, in this case, the tracks used are not so 
populär as they were, and they may now be difficult to obtain. 

The list is lengthy and additions simply require imagination and 
preparation on the part of the teacher. The most successful demonstrations 
usually evolve from discussions with colleagues. A Chance remark, or 
communication out of context, is often the catalyst for the development of 
quite stimulating and worthwile presentations. In trying these experiments, 
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the lecturer will gain in confidence and experience and will find that ideas 
for developments and extensions will occur quite naturally. To quote a 
familiär proverb, nothing ventured, nothing gained. 

The scope of such demonstrations can be extended by the use of 
Photographie techniques to trace the path of a particle, but this often 
requires more sophisticated apparatus—a stroboscope and a polaroid 
camera. Projectile motion, elastic impact and normal modes are topics 
which have been covered in this manner in modelling courses at Brighton 
Polytechnic, and with the summer school practica! element of the MST204 
Mathematical Methods and Modelling course of the Open University. The 
guiding principles in the suggestions for interactive lecture demonstrations 
include the most important fact that they should be simple, effective and 
require no sophisticated equipment. There may be a temptation on the part 
of some teachers to emulate the physicist in this respect, but the authors 
believe that there is great merit in giving to the students demonstrations in 
which they themselves can partieipate and which they can repeat at home. 

The demonstrations outlined in this chapter form an interesting and 
stimulating exercise, but they must not be used in isolation. They should be 
considered as an essential part of the whole modelling process, 
emphasising the need for model Validation, and as an effective climax to 
the modelling which has taken place. 
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1. INTRODUCTION 

With the giowth in the availability of microcomputers for use in courses on 
mathematical modelling, it is likely that there will be an increased emphasis 
on the formulation of discrete models. This view may be supported from 
two different Standpoints: 

(i) Students, in general, find it more natural to use a discrete formulation 
when dealing with many situations; particularly situations where the 
associated data is only available in a discrete format. 

(ii) Discrete models lead to easy programming for investigation on a 
Computer and complexities incorporated within the model appear easy 
to introduce. Continuous models, however, become less tractable as 
more and more complexities are incorporated. 

This chapter considers some of the problems students face when 
interpreting responses of discrete models which may not have associated 
parallels if the corresponding continuous model is adopted. It is tutorial in 
nature and provides suitable material for drawing out the issues within a 
classroom Situation. 

In order to highlight some aspects of its Solution the Standard limited 
resources growth model is first considered. This is included in order to 
provide relevant background material for the modelling exercise that 
follows. 
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2. LIMITED RESOURCES GROWTH MODEL 

2.1 A typical Situation 

A typical Situation is that depicted by a population growing within a closed 
environment which is subject to the availability of a l imited supply of 
resources. The model l ing of such a Situation is well d o c u m e n t e d in the 
literature and will, therefore, not be investigated in detail here. It is 
characterised by a growth rate X(x,i) whose value at t ime t is dependent on 
the populat ion size x(l) at that instant. It is clearly not possible to specify 
the exact functional relationship between X(x, t) and but it is realistic to 
assume that it has features as depicted graphically in Fig. 1. 

For low populat ion ievels a 
s tochast ic re lat ionship more appropr iate 

A per iod of constant growth rate 

Some decreas ing funct ion due 
to envi ronmenta l l imitations 

Fig. 1. Relationship between growth rate and population. 

Taking the initial population level to be .r(0) = x0, where x0 <N and is 
sufficiently large to avoid the need for stochastic considerations, and 
assuming that the decreasing functional relationship be tween A(x, i) and 
x(t) is linear then the Situation may be model led in a cont inuous form by 
the differential equation 

ir, in discrete form by the difference equation 

x(n + 1) = + * J l (2) 

where er is a constant parameter. 

2.2 The continuous model 
The differential equation (1), subject to the initial condit ion x(0) 
be so lved to obtain the explicit Solution 

- x0 may 
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which corresponds to the well known logistic growth curve o f Fig. 2 and 
first proposed as a population model by Verhulst in 1938. 

The point to note here is that the cont inuous mode l of e q u a t i o n (1), 
predicts that the population level x(t) will approach the value N in an 
increasing monotonic manner independent of the values of both a and x0. 
At this stage therefore, N may be interpreted as be ing the m a x i m u m 
population level sustainable within the environment . 

As an interesting aside it could be pointed out to s tudents that this 
information could have been obtained without actually obta in ing the 
explicit Solution (3) of equation (1). This is done graphically by drawing 
the phase-plane plot (see Fig. 3). By inspection of this plot it is clearly 
seen that for 0 < x„ < N the population will a lways increase monoton ica l ly 
to the value N, which was the conclusion arrived at by cons ider ing the 
explicit Solution. 

2.3 The discrete model 
Explicit Solutions of nonlinear difference equat ions are not so readily 
obtained and it is unlikely that students would at tempt to solve 
equation (2). Rather, the investigation of equat ion (2) will be undertaken 

Fig. 3. Phase-plan plot for continuous model of equation (1). 
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Kl l f S = c h r S ( 1 3 ) 
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4 0 d lm x ( 1 0 0 ) 
50 i n p u t " e n t e r r e s u l t s - f i l e n a n e " , n S 
60 m=0 
7 0 l f n S O " " t h e n m=l 
80 I f m=0 t h e n g o t o 1 0 0 
9 0 o p e n nS a s n> 
100 i n p u t " e n t e r interceDt",a 
1 1 0 i n p u t " e n t e r s l o p e ( m a ? n i t u d e ) " , b 
120 i n p u t " e n t e r i n i t i a l p o p u l a t i o n " , x ( 0 ) 
130 i n p u t "maximum t i m e ( i n t e £ e r ) " , m t 
H O p r i n t * m , l f S ; l f S ; 1 f S 
1 5 0 p r i n t tfm," - L i m i t e d r e s o u r c e m o d e l " ; I f S ; l f S 
160 p r i n t i»ra,,"a =" ; i n t ( 1 0 0 0 * a + . 5 ) / 1 0 0 0 , , " b =" ; i n t ( 1 0 0 0 0 * b + . 5 ) / 1 0 Q O 0 
1 6 5 p r i n t p o p n . • " ; i n t ( a / b + . 5 ) 
1 7 0 p r i n t im,,"x0 =" ; i n t ( 1 0 * x ( 0 ) + . 5) / 1 0 
ISO p r i n t * m , , " t n i a x =";">t 
19H p r i n t 3 m , l " t i n e " l " n o n u l a t i o n " 
2 0 0 p r i n t / » n , , 0 , I n t ( 1 0 * x ( 0 ) + . 5 ) / 1 0 
2 1 0 f o r .i=l t o mt 
2 2 0 x ( i ) = x ( . i - l ) * ( l+a-b*x( .1-1)1 
2 3 0 n r i n t ; 'm, , i , i n t ( 1 0 * x ( i ) + . 5 ) / 1 0 
2 4 0 next j 
2 5 0 n r i n t • " n , l f S ; l f $ 
2 6 0 i f m=0 t h e n 2 8 0 
2 7 0 c l o s e n 
2 8 0 i n r m t aS 
2 9 0 i f aS="v" then 50 
3 0 0 end 

Fig. 4. BASIC program for investigating the discrete model (4) . 

using a small p r o g T a m on a microcomputer. The BASIC program of Fig. 4 
O u t p u t s a sequence of values of x(n) for the difference equation 

x(n + )= x(n) + (a-b x(n))x(n) (4) 

where a = a and N = a/b to match parameters with equation (2). When 
carrying out such a numerical investigation, students may come across 
responses having different characteristics. For instance, taking x0 = 1000 
and b = 10 4 the responses of equation (4), corresponding to the 
Parameter a having the three values 1, 2 and 3, are shown in Figs 5(i)-5(iü) 
respectively, where n h a s been mapped into appropriate t values. A more 
detailed discussion on such responses may be found in the text by Dorn and 
McCracken (1976). 

2.4 Comment on the responses 
Responses such as those of Figs 5(i) and 5(ii) are readily acceptable by 
students whilst a response such as that of Fig. 5(iii). w h i c h is rarely 

BASIC proRram for LIMITED KESOURCF. MOREL 



(iii) 

Fig. 5. Responses of discrete model. 
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obtained in practice, is most likely to lead to a search for errors in the 
program! 

When students first meet such responses they do not relate them to 
differences in choice of parameter values and frequently argue with 
colleagues over differences. The fact that different values for the initial 
conditions can lead to different kinds of responses is not at all obvious to 
them. 

It is easy to take the v iew that the various responses of section 2.3 are a 
result of poor numerical procedures for investigating the continuous model 
of equation (1). However, one must not assume that the continuous model 
is the most appropriate for replicating the real Situation. 

3. AN ILLUSTRATIVE SITUATION 

3.1 Data set 
In their text A First Course in Mathematical Modelling Giordano and Weir 
(1985) demonstrate the fitting of a logistic curve to Pearl's data (1927) on 
the growth of yeast in a culture. The method of fitting used requires that a 
reasonable estimate of the limiting population be available which may not 
be the case in practice. Pearl's data is reproduced here as columns (1) and 
(2) of Table 1, where column (1) denotes time in hours and column (2) 
denotes the observed yeast biomass and is used here as base data due to its 
quality o f fit to the logistic curve. 

3.2 Problem setting 
The Student is given the problem Situation: 
Here is some past population data taken at discrete points in time; forecast 
the future behaviour of the population. 
The past data used is the yeast data of Table 1 or a subset of it. It is 
assumed that the problem Situation is given to students having a reasonable 
knowledge of mathematics, including a knowledge of simple regression 
analysis. It is a lso anticipated that the students have available to them, 
as background aids, microcomputers and s ome useful mathematical 
packages. 

3.3 Initial considerations 
Population models may be dealt with in a variety of ways , but their basis, 
using the notation of section 2.1, is the growth model 

or an equivalent discrete form. 
What should be stressed is that, in general, it is the form of X(x, t) as a 

function of t or, implicitly, as a function of x that is important; given a form 
for k(x,t) then much of the guesswork is removed thereafter. This 
important facet of modelling population situations is rarely stressed in 



136 Mathematical Modelling—Methodology, Models and Micros 

Table 1 Growth of yeast in a culture 

(1) (2) (3) (4) (5) 
r Observed lncrease Ave rage Growth rate 

0 9.6 
8.7 13.95 0.623 

1 18.3 
10.7 23.65 0.452 

1 29.0 
18.2 13.10 0.478 

3 47.2 
23.9 59.15 0.404 

4 71.1 
48.0 95.10 0.505 

5 119.1 
55.5 146.85 0.378 

6 174.6 
82.7 215.95 0.383 

7 257.3 
93.4 304.00 0.307 

350.7 
90.3 395.85 0.261 

9 441.0 
72.3 477.15 0.152 

10 513.3 
46.4 536.50 0.086 

11 559.7 
35.1 577.40 0.061 

12 594.8 
34.6 612.10 0.057 

13 629.4 
11.4 635.10 0.018 

14 640.8 
10.3 645.95 0.016 

15 651.1 
4.8 653.50 0.007 

16 655.9 
3.7 657.75 0.006 

17 659.6 
2.2 660.70 0.003 

18 661.8 

textbooks. Unfortunately, past data does not make it obvious as to what 
form should be taken for X(x,t) and it needs to be investigated in order to 
generate some ideas. In Table 1 the simple procedure of dividing increase 
in population, column (3), by average population, column (4), to get 
growth rate as a proportion. column (5), is demonstrated; there is 
obviously room for refinement on this simple approach. The results of 
plotting the value in column (5) against both time, column (1), and popu
lation, column (4), are then considered and a view taken as to a 
possible form for X(x,t). Not surprisingly, for this data, a plot of X(x,t) 
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Fig. 6. Scatter diagram of growth rate against population and resulting regression 
line. 

against x, shown in Fig. 6, may be accepted as linear giving X(x, t) in one of 
the two equivalent forms 

X = or(l -x/N) 

Simple linear regression may be used to estimate the parameters of the 
line; the result of which is also shown in Fig. 6. 

3.4 The model 
This section is mainly concerned with the way a Student tackles the 
problem of Validation and then prediction. The more mathematical 
students may aspire along the continuous lines outlined in section 2.2 
whilst the Computer oriented students tend to opt for the discrete approach 
of section 2.3. 

Using the data shown in Table l the least Squares line indicated in 
Fig. 5 is 

X = 0.53129 - 0.000795l.r (5a) 

X = a - bx 
or 

or 
X = 0.53129 (1 - x/668) (5b) 
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+ data points 
- — - continuous response 
— — discrete reponse 

Fig. 7. Responses of continuous and discrete models for data of Table 1. 

3.5 Limited data (sparse) 
Should the given population data be rather less well defined and, say, only 
every third Observation of population in column (2) of Table 1 be given 
then progressing along the lines outlined in sections 3.3 and 3.4 will 
result in changes in the observed resoponses. 

Adopting the same procedure, as that applied in section 3.3 to the data 
of Table 1, to the reduced data yields a plot of A(x, t) versus x that strongly 
suggests linearity with the fitted line 

>l = 1.410 27 - 0.002 103.? (6a) 
or 

X = 1.410 27 (1 - x / 6 7 1 ) (6b) 

Taking the values of a and N from equation (5b) and substituting in 
equation (3) yields a response giving a fair fit to the data provided. On the 
other hand, using the values of a and b from equation (5a) in equation (4) 
yields a response which is a poorer, but still adequate, fit to the given data 
with the value of .v0 not being critical. Both responses are shown graphically 
in Fig. 7 and yield similar predictions. 

The poorer fit of the discrete model response may be due to the way 
>l(jr,/) has been determined. Since, in the discrete model, increase operate 
from the last quoted population it would have been more appropnate in this 
case to determine the growth rate using the values in column (2), rather than 
those of column (4), of Table 1. Alternatively, the discrete model may be 
refined so that the X(x,i) of equation (5) is appropriate and a variety of 
ideas may be tried. 
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having a correlation coefficient of - 0 . 9 9 6 (which students will claim is 
nearly perfect!) 

The responses of both the continuuous and discrete models of 
equations (3) and (4) are shown in Fig. 8, together with the test data. The 
'omitted' data values are also indicated in the figure so that the effect of 
their Omission may be judged. As may be observed the continuous model 
still shows an adequate fit and predicts a slow approach to the limiting 
population. The discrete model, however, shows a large discrepancy and 
produces a small oscillation attenuating to the limiting population similar 
in manner to that depicted in Fig. 5(ii). 

If in the discrete case the determination of X(x, t) is refined along the lines 
discussed in the previous section then an even more extreme response than 
that depicted in Fig. 5(iii) is obtained. However, for this Situation a plot of 
X(x,t) versus x does not indicate a linear relationship. Adopting a 
simplistic approach, such as making or = 2.5 and keeping N at 671 yields a 
response which initially tracks the given data but soon becomes wildly 
oscillatory. 

3.6 Limited data (truncated) 
Here the Situation when the given data is restricted to the early values is 
considered. The data set is assumed to be alternate values in columns (1) 
and (2) taken up to a time of 10 hours, thus yielding six observations of 
population values. Evaluating X(x, t), using the simple procedure outlined 
in section 3.3, yields five values for X(x,t) which look linear when plotted 
against x. (In this case a linear assumption is also not unreasonable when 
X(x, t) is plotted against t and an investigation of this Situation is left as an 
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exercise for the reader.) Taking the view that the second value is an 
aberration the linear fit 

X = 1.037 - 0.0015üv 

is obtained. The corresponding response of the continuous model, 
equation (3), provides a moderate fit, whilst that of the discrete model, 
equation (4), provides a poor fit to the observed data. If the values of X(x, t) 
are determined, along the lines suggested in section 3.4, using the last 
quoted population value then the plots X(x,t) suggest that it is a linear 
function of time but not of ,v; suggesting therefore that this is not a limited 
resources Situation. The 'casual' fit of 

X(x,() = 2.06 - 0.385« 

when used in the discrete model leads to a response which is a good fit to 
the given truncated adata (even better than the continuous model 
response) but given our knowledge of what eventually happens its 
predictions are surprising. The responses are illustrated in Fig. 9. 

4. CONCLUSIONS 

The chapter considers some of the issues a teacher may have to face up to 
when advising students using a discrete approach to a mathematical 
modelling exercise. The main points to which attention must be drawn 
are 

(i) One must not restrict the student's approach as there is no clear 
indication in advance as to whether a continuous or discrete approach 
is the most appropriate for a particular Situation. 

e & 

500 4-
4- Observation 
© known extension 

— — — continuous model 
— discrete time model 

limited resources model 

O 
18 

Fig. 9. Responses for truncated data. 
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(ii) A discrete model should not be looked upon as being a crude 
numerical approximation to a continuous model. 

(iii) During the investigatory stage discrete models require two aspects to 
be considered: 
(a) effects arising directly from issues relating to the problem 

Situation; 
(b) effects attributable to the properties of difference equations; for 

example small departures in parameter values can lead to 
responses with distinctly different characteristics. 
This contrasts with the continuous model where only the 
consequences of (a) have to be considered. 

(iv) In a discrete model formulation small enhancements are not so 
effectively introduced as they may, for example, require a complete 
re-estimation of parameters. Consequently, considerably more 
thought should be given to the initial design of discrete models than is 
often the case. 
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Mechanics via Cosmology 
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SUMMARY 

The most successful teachers manage to engage the enthusiasm of their 
students, be it by clarity, or by relevance to an important contemporary 
issue, or by showing that students can now obtain interesting results by 
themselves. A case will be made out for importing much needed 
enthusiasm into the teaching of classical mechanics by the use of ideas from 
cosmology. This can be made to exhibit all three of the above 
characteristics. In this chapter some examples will be given on how this 
somewhat unusual application of mechanics can be handled. The relation 
between energy equations and equations of motion can be exhibited, using 
Hubble's law. One can also deduce the simpler cosmological models in this 
way. Critical density, deceleration parameter, a singularity theorem, and 
some black hole properties, can be explained quantitatively within 
Newtonian mechanics. Provided some caveats are introduced, and one is 
not too ambitious, results are found that are in agreement with, but do not 
depend on, general relativity. 

The chapter contains one introductory section and six mathematical 
appendices which illustrate our topic. 

1. INTRODUCTORY SECTION 

Mathematical modelling means that one takes a given problem provided by 
our surroundings, and replaces it by a more clearly defined Situation which 
is mathematically tractable. The approximations are then contained in the 
transition "reality -» model". This procedure has been followed in classical 
mechanics for centuries. Just as human subjects become grey over the 
years, it seems the very age of the subject of mechanics has enveloped its 
aura at school also with a certain greyness. The extensible string, the rigid 
disc, the smooth surface—they do not make you think of vibrant life, of 
exciting discovery; I am afraid they make you think of the teacher in his 
study, pencil in hand. There is nothing wrong with this; I am such a person 
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myself. I like my study. However, I want to project applied mathematics to 
be something so exciting that the study itself become^s a seat of excitement. 

There must be several ways of doing so. One which I have advocated for 
some time is to use cosmology as a vehicle (Landsberg, 1963). This seems 
on first reflection a hard thing to do, since the general relativity theory, on 
which modern cosmology is based, will remain beyond the school syllabus 
for decades. However, there were published in 1934 some papers which 
lifted the curtain by showing that, over a certain large area, Newtonian 
cosmology gives results which are essentially the same as those of 
relativistic cosmology (McCrea & Milne, 1934). Of course one has to 
exercise care. The expansion of space itself is not part of the Newtonian 
picture, since in the latter a System of galaxies expands into a pre-existing 
space. Space curvature is also unknown in Newtonian theory. Remarkably 
enough, however, the main cosmological models of the universe—which 
fortunately are the simple ones—arise in Newtonian theory almost exactly 
as they do in relativistic theory. Thus a book about the Newtonian 
approach—following in the Steps of E. A. Milne and Bill 
McCrea—seemed desirable and was written (Landsberg & Evans, 1977). 
It is within the reach of a good sixth former, but one should be able to do 
better, by adopting consistently the point of view of a sixth former. I am 
engaged in this task at this time. 

For the present purpose it must suffice to give examples. Below I give six 
considerations from Newtonian cosmology which lead to conclusions which 
are identical with those one would derive from the general theory of 
relativity. We shall use classical mechanics, and this suggests that it could 
be taught via the medium of cosmology. 

In the first example the Hubble parameter H(t) is introduced. It can be 
backed up by some historical remarks and anecdotes, and it can be used to 
teach kinematics (the study of the motion of bodies without considering the 
causes of these motions). Applications, properly conceived, lead one 
directly to cosmological models, which can be studied and generalised 
beyond what 1 do here. Newton's laws of motion and of gravitation come 
next. Combined with Hubble's law, one finds the main differential 
equation of cosmology: equation (12) or (14). As an application, one 
arrives at the escape velocity and an estimate of the so-called critical 
density of cosmological theory. It is but a small step now to model the black 
hole and gravitational collapse. 

It is somewhat novel to approach this subject in a strictly Newtonian 
frame of mind. However, there are a good many books on cosmology at all 
levels of sophistication. We cite a few which give some mathematics 
without being too advanced for the present context (Berry. 1976; 
Rowan-Robinson 1981; Narlikar 1983; Layzer 1984). 

APPENDIX I. KINEMATICS: THE LAW OF EDWIN HUBBLE 

1. Events (r,t) are noted by the reception of a light pulse by an observer at 
(r 0 , / 0 )- The times of occurence are always corrected for the time it 
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takes light to reach the observer: 

»o = t + |r 0 - r | /c (1) 

This holds for all models in classical and special relativity mechanics. 
For all galaxies / at all times t the Position from some origin is 

(r,(0 = W (/>,(«)} - {'.(') = n{0) = exp I ' H dt 

" C o ) Jiu 

3. The deceleration parameter is 

Hr, + H2r,r, 
r,r, 

' T T : 

H 
TP 

- 1 (indep. of i) 

(2) 

(3) 

Problem (a) (Kinematics). Prove that galaxies do not overtake each other. 
Solution (a) Use (2). If at t* r A (t*) = r B ( i" ) , then 

{R(t')rA(0) = Ä ( / > s ( 0 ) } - K ( 0 ) = r f l(0)} - {r,( .) = r B ( r )} 

at all times. So galaxies are the same distance from the origin at one time 
only if they are so at all times. 
Problem (b) Find q for a steady-state universe. 
Solution (b) Use (3). In a steady-state H is the same at all times, whence 
q = - 1 . Then by (2) 

R(t) = R(0) exp(Ht) (4) 

Problem (c) (Simple Differential Equation). Find the dependence on time 
of R(t) and HU) if <J is time-independent (^ - 1 ) . 
Solution (c) If q is a constant and /I and B constants of Integration, 

R R 
— — - <? - — > 
R R 

R< R •• 
q + 1 

R"*1 = At + B}. (5) 

Thus 

{(<? + l)R"R =A) H = 
1 

(q + l)(t + B/A) 

Note if /? = 0 at t = 0, then B = 0. 

(6) 

APPENDIX 2. APPLICATIONS OF KINEMATICS: COSMOLOGICAL 
MODELS 

The problems (b) and (c) (q = const.) have the following applications. 

(i) The steady-state model q = -1. 
This model is due to H. Bondi, T. Gold and F. Hoyle (1948) and can 
be derived from the perfect cosmological principle that neither history 
nor geography matters. Thus the average density of matter and the 
Hubble constant are time-independent. 
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(8) 

(ii) The Milne model q = 0. R(t) = At + B, H(t) = (t + B/A)~l (7) 
If galaxies have constant velocities then if r,(0) = 0 

r,(f) = vt 

So by (2) 

rJO = v = 1 
r,(t) vt t 

At t = 0 there is a big-bang singularity. The Hubble time H ' is the 
age of the universe. 

Ever-expanding models tend to go over into the Milne model, since 
the matter is thinned out to make for zero gravitational deceleration. 

(iii) Einstein-de Sitter model (1932) q = \. Use problem (c) with B = 0. 

Ä ( 0 J = i 4 V . » ( 0 = 2/3f (9) 
The age, t, of the universe is two-thirds times the Hubble time H'. 
Some astronomical observations support q - \. Several models 
approach this one as R —» 0. 

APPENDIX 3. RELATION BETWEEN AN ENERGY EQUATION AND 
AN EQUATION OF MOTION 

The energy equation 

r = ?m,r,(0)2 R(t)2 = AR(t)2 

ÄR-R ^ Ä p R ^ ' ^ 

1 

W) 
B 

R(t) 

E 
Ä 

Pc = 
A • , 
-oRR' 

(10) 

(11) 

(12) 

(13) 

For p > pc, E < 0 and the model collapses. 
For p < p c, E > 0 and the model expands for ever. 

The equation of motion 

(14) 

i.e. 

R2 2ARR2 2p c 

(15) 
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Thus for q s J (p s pc) the models expand forever. This includes the 
Einstein-de Sitter model, which has p = pc. For q > j (p > pc) there is a 
recontraction. 

The R equation shows that R is concave towards the f-axis. Thus there 
exists a time t s such that R(t,) = 0 and therefore p(ts) diverges. This is a 
singuiarity theorem. 

Starting with the equation of motion (3.5), the energy equation (3.3) can 
be obtained by integration. 

APPENDIX 4. APPLICATION OF THE ENERGY EQUATION: ESCAPE 
VELOCITY AND THE CRITICAL DENSITY 

The total energy of a body of mass m is in Newtonian terms its kinetic 
energy plus its potential (gravitational) energy due to the presence of a 
heavy gravitating particle of mass M at distance r 

1 , GMm 1 , 
E = - - m v < r f _ _ = _ m v ( = ° ) 2 (16) 

Here the velocity is measured in a frame of reference in which the heavy 
body is at rest, and G is Newton's gravitational constant. It has been 
assumed that the particle can escape to infinity with velocity v(oo). If this is 
only just possible, then v (« ) = 0. In any case the condition for escape from 
a spherical surface of radius r is 

v(r) 3= y(2GM/r) = v e ( / ) (= 33.7 Mach for the earth) (17) 

This is the famous escape velocity. 
UM is due to a uniform distribution of matter of density p and of radius 

in excess of r, then only the mass within the radius r is effective in providing 
a gravitational pull. Furthermore, if the cloud of matter is expanding 
according to Hubble's law, the inequality is 

/ / y * 2 £ 4 * > ( 1 8 ) 

r 3 

whence p « 3H2/&nG = p c (= 5 x K T 3 0 gm c m ' 5 if H'1 = 6 x 10" s)* 

This is the condition for an expanding model universe in Newtonian (as 
well as in general relativistic) theory. For the Einstein-de Sitter model 
P = Pc-

APPENDIX 5. APPLICATION OF THE EQUATION OF MOTION. 
COLLAPSE TO A BLACK HOLE 

For any particle of mass M there exists a distance r„ from it such that for 
r < ru no escape is possible because v e(r 0) in (17) is the velocity c of light in 
vacuo. Working in c.g.s. units, with Me denoting the mass of the sun. 
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For a uniform distribution of matter of density p the above holds if M is 
interpreted as (4rr/3)p r„ 3 . In intermediate cases when the object is 
confined to a region of radius r < r0 it is called a black hole and not even 
iight can escape from it. 

If a test particle resides on the surface of a spherically Symmetrie object 
collapsing from zero velocity at a radius r at time t = 0, then its equation of 
motion is 

x = -GMx'\ i . e .* 2 = 2GM(x~l - rl) = 2GMx'1 = rac2x 

if x <S r, Hence \x\ = c when the black hole radius x = r0 is reached. 
Another integration gives the time t0 needed for collapse to this radius 

\ {r»2 - rl'2) ~ cr0

l%. 

Hence 

_ _ 2 r [7 2 x 7 x 10 s(Km) ITÖITW 
3 c V ^ 3 x 3 x 10 5(Kms ') V 3 5 0 S 

The numerical work applies to the collapse of an object which is the size of 
the sun. 

APPENDIX 6. NON-CONSERVATION OF MASS: CREATION RATE OF 
MATTER IN THE STEADY-STATE MODEL 

If v(/) = 4irr 3/3 is the volume of space bounded by speeified galaxies at 
time t, the volume bounded by them at time i + A< is 

v ( f + Ar) = v(t) + Aw2h = v(t) + A v 

where h is the thickness of the new shell of matter created by expansion. If 
H is the present value of the Hubble parameter ~ ( 6 x 10 1 7 s)" ' then 

A v = 4nr 2 x Hr Ar . 

Since Hubble's law does not allow the overtaking of one galaxy by another, 
no galaxies enter the volume from the outside. The generation rate per unit 
volume, G, of matter can therefore be obtained from the present matter 
density <50 =*= 10" 2 ' 1 Kg m" ' which must fill the newly created volume A v . 
Hence 

<^Av = 60 x 4 w - W A f = 

vAr (4rt/3)rA/ 
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The mass of a hydrogen atom is = 2 x 10~ ; 7 Kg, a year is 3.2 x 10 7 sec so 
that 

3 x 10 2 6 

C = = 5 x 1 0 J J Kg m V 
6 x 1 0 " 

5 x 10 - 1 4 x 3.2 x 10'" 
= = 8 x 10 ' H atoms m ' per 1000 years 

2 x 1 0 - " 

This is roughly one hydrogen atom in a cube of side 100 m in 1000 years. 
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SUMMARY 

Information technology makes increasing use of discrete techniques, such 
as digital Computers, for information representation and processing. As a 
result, greater emphasis is falling on the use of discrete models in the 
design process. This shows up in changes in the mathematics curriculum of 
Information System Engineers as a shift towards discrete mathematics with 
less emphasis placed on continuous mathematics as such, and more placed 
on the relationships between continuous and discrete. 

1. INTRODUCTION: INFORMATION SYSTEMS AT UEA 

This chapter is concerned with the mathematics component in the 
formation of Electronic Systems Engineers, and the way in which 
inexorable trends towards discrete Systems in information technology need 
to be matched by a corresponding emphasis on discrete mathematics. 

The views advocated by the author are the result of participation in a 
three year redevelopment of the Electronic Systems Engineering 
Programme at the University of East Anglia. This redevelopment has been 
part of a wider rationalisation of information technology interests in the 
University, which has resulted in the foundation of a new School of 
Information Systems incorporating undergraduate, postgraduate, research 
and consultancy activities in accountancy, business information Systems, 
Computer science, Computer Systems engineering, as well as electronic 
Systems engineering. 

This reorganisation has been accompanied by a radical reappraisal of 
virtually all the subject matter in each of the five undergraduate 
programmes offered in the School. Each of the new curricula emerging 
from this process is a consensus of requirements generated in a variety of 
ways: educational or vocational prerequisites for individual courses, 
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COMPUTING 

PHYSICS 

MICROELECTRONICS 

COMMUNICATION CONTROL 

MATHEMATICAL MODELLING 

Fig. 1. Disciplinary structure of clectroni ic Systems engineering. 

cross-sectoral commonality to ensure optimal managment of resources, 
and the desire to preserve the interdisciplinary traditions of the University. 
In this chapter, attention is drawn to the process of formulating 
requirements for a mathematics curriculum to support the formation of 
Electronic Systems Engineers. 

Electronic Systems engineering is envisaged (Fig. 1) as the combination 
of three cognate disciplines: Computing, communication and control. 
These share common roots in the use of electronic techniques, with a 
preference for microelectronic implementation. This in turn embodies a 
comprehension and exploitation of physical principles—mainly (but not 
exclusively) the physics of the solid state. But there is another unifying 
framework, that of mathematical modelling. Formal modelling techniques 
play an increasingly important role in the design of modern information 
Systems at the professional level (see, for instance, Cattermole & O'Reilly, 
1984), and this necessitates a similar emphasis in undergradulate curricula. 
It is not always appreciated in schools and sixth-form Colleges, for example, 
just how much modern System engineering relies upon abstract 
mathematics for modelling purposes. Accordingly, system engineering is 
much more a natural career for a mathematical specialist than, say, a 
physicist. The discussion that follows is aimed at teachers of mathematics in 
the later years of secondary and the early years of tertiary education. The 
objective is a modest one: to demonstrate that the concepts of discrete 
mathematics, as propounded for instance in Lipschutz (1976), form a 
natural foundation for one topic of major importance in the design of 
information Systems, namely linear system theory. In fact, the applicability 
of discrete mathematics goes far beyond the Single example chosen, and 
penetrates deep into the foundations of the subject. An account of these 
foundations can be found, for instance, in Shannon's seminal exposition of 
the Mathematical Theory of Communication (Shannon & Weaver, 1964): 
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most of that material should be accessible to a good sixth-former or 
first-year university Student. 

2. SIGNALS AND SYSTEMS 

A system may be regarded as an Operator ^/processesing an input signal x 
to produce an output signal y. For definiteness, we may think of x andy as 
voltages, modelled as functions of time as in Fig. 2. 

Fig. 2. System diagram. 

There are four signal categories to consider: the time variable (denoted 
by t) and the voltage value (denoted by v) can be either continuous or 
discrete (sampled) as in Fig. 3. 

C o n t i n u o u s 
v o l t a g e 

Ät)iR 

UR 
C o n t i n u o u s 

t i m e 

v(t)tR 

UZ 

_ D i s c r e t e 
t ime 

vtt)«Z 

Tu* 
D i s c r e t e 
v o l t a g e 

Fig. 3. Signal categories. 

The system input-output relation is depicted in various ways, for 
example: 

x -

y : x 

y{x(t)) = y(t) 

(1) 

(2 ) 

(3) 
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Signals x and y are considered as elements of the same signal (vector) space 
V, and the system O p e r a t o r as an d e m e n t of a space of Operators Q. For 
simplicity we restrict our attention to the case when both Signals and 
Systems are deterministic, and we concentrate on the subspace of linear 
Systems. 

3. LINEAR SYSTEMS 

3.1 Continuous l i n e a r S y s t e m s 

Linear Systems conform to the linearity axiom 

M{c,xt(i) + Clxi(t)} = c,^{x,(t)} + c2Sf{x2(i)} (4) 

where Sfe C' ;xux2 « V a n d c , ^ « fthefieldunderlying V. Usually, but not 
always, F = F o r C. In the physical sciences this property is known as the 
pnnciple of superposition, and in system theory it is usually depicted 
pictorially as in Fig. 4. 

Fig. 4. The linearity axiom. 

The modelling of linear Systems Starts by appealing to familiär notions of 
primitive linear Operations such as the following. 

multiplicative scaling by a constant (amplification/attenuation) 

y{t)=c.x{t) (5) 

multiplicative scaling by another time-varying function (modulation) 

y ( 0 = c ( i M ( / ) (6) 

time-translation (delay) 

y(t) = x(t - T) (7) 

The diagrammatical equivalents are shown in Fig. 5. 

» Q - f c - ^ > . », < 

G a ' n Modulation 

Fig. 5. Primitive linear Operations. 

Delay 
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h(t,n 
Fig. 6. Time-varying linear system. 

The time-variation is also manifest by diagnosing the system behaviour 
by means of an input signal chosen for its simplicity—the Dirac 
delta-function impulse ö(t' - T) (a generalised function), located at time 
/' = T. For this case the Output, the impulse response, is 

y(t)=\h(t/)S(i' -T)d,' =h(t,T) (13) 

In general , the Outputy{l) will be a different function for different values of 
T, and the system is therefore time-varying. That is, the system is 
characterised by a family of impulse responses, parametrised by T. 

The special case for which the behaviour of H does not fluctuate with T 
is of particular importance: time-invariant linear Systems are called filters 
and are characterised by a translational impulse response 

* ( < / ) = * ( ' - O (14) 

Note that the addition of a constant (or another signal) is a nonl inear 
Operation. But the addition of a scaled delayed version of the original 
signal is linear: 

y(t) =x(t) + h.x(t~ T) (8) 

This can be ex tended t o cover the case of a finite linear combinat ion of 
de layed inputs, 

y(') = lh,x(t -T,) (9) 

and then, by taking the limit, to the case of an infinite linear combinat ion of 
input signals de layed by infinitesimal incremems 

y(t)=jh(i')x(t-t')dt (10) 

The most general case can be obtained by making the change of variable 
t' —* t - t' and allowing the constant coefficients h to vary with time t. 

y(r) =jfc(t/)jc(Odl* (11) 

Thus the Operator may be considered as a generalised linear transform. 
Writing it as a linear functional 

# { - } = J * ( * / ) • (Od/' (12) 
emphas i ses the way the transform operates on arbitrary input signals 
(denoted by the vacancy symbol ' • ' ) . The function A(\*) is called the 
system kernel (not to be confused with kernel used in the sense of 
null-space) . The general linear Operator is time-varying. This is obv ious 
from the System diagram model , Fig. 6. 
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and the corresponding system Operator is called convolution, 

y(.) = ] / , ( , - 0 * ( ' ' ) * ' (15) 

and is given the special symbol * 

y=h*x (16) 

In addition to convolutional time-domain modelling, time-invariant linear 
Systems admit to further exploration via system invariants or eigensignals. 
These are Signals that suffer only a (complex) change of amplitude, that is 
scaling, in passage through the system. They provide a method of 
diagnosing system behaviour complementary to impulse-testing. The 
eigensignals of a convolutional Operator are complex exponential functions 
of time, parametrised by an additional variable / . 

e#) = exp(j2nfi) (17) 

The corresponding eigen value is i,, or in functional notation H(f). That is 

* {exp(/2rt/,)} = H(f) • exp(/2*/J) (18) 

H(f) is given by the equation 

H(f) = J e x p ( - / 2 * / i ) h{t) dt = f {*(/)} (19) 

were ?denotes the Fourier transform. Since the eigensignal set is linearly 
independent and complete (within some suitably defined signal space) the 
Fourier transform (and its inverse 9 ') may be regarded as orthogonal 
transformations, or rather unitary transformations in view of the 
complexity of the underlying field. 

The parameter/may be regarded as a frequency, and H(f) is accordingly 
termed the frequency response. Note that this approach shows that the use 
of the Fourier transform is not a matter of convenient choice. Given that 
the system is linear and time-invariant, the eigensignals can only be the 
complex exponentials, and the eigenvalues are inexorably determined as a 
Fourier transform. 

The multiplicative effect of the system on the eigensignals generalises 
(because the system is linear) to all Signals representable as a linear 
superposition of eigensignals. That is, if 

j t ( f ) = J * ( / ) e x p ( / 2 i r j J ) d / (20) 

and 

y(,)=JY(f)exp(j2«fi)df ( 2 i ) 

then 

y(f) = Hif)- X{f) (22) 

The functions X(f) and Y(f) represent the frequency content of the Signals 
x(t) and y(f), respectively, at each individual frequency / . They are, of 
course, the spectra of their corresponding S i g n a l s , so thal j •exp(j2nfl)df k 
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the inverse Fourier transform & ~ \ and we have arrived at the convolution 
theorem: 

(23) 

X.Y 

Thus the Fourier transform canonicalises the convolution O p e r a t o r , 
simplifying i t s relatively c o m p l i c a t e d mul t ip ly—and—integra te character 
into a purely multiplicative form. 

3.2 Discrete linear S y s t e m s 

In this case the time variable is discretised, that is sampled, so that the 
signal can now be regarded as a sequence or vector indexed by an integer 
n ( Z. 

x(nT)=x(n); y(nT) = y(n) 

{x(n)} ~ x ; {y(«)} — y 

The general ised linear Operator is also discretised 

*[x(m)) =y(n) = ^h{n,m)x(m) 

(24) 

(25) 

(26) 

which is easiiy recognised as a matrix transformation 

y = Hx 

with 

[ H L, = h(n,m) 

(27) 

(28) 

provided the signal sequences are regarded as column vectors. 
Specialisation to the time-invariant case models a discrete filter by 

means of a convolution matrix whose rows and columns are translated 
versions of the unique impulse response 

[ H Inn = /i(n,m) = h(n - m) 

for example, 

H 
A ( - l ) h(0) 

- A(0) • 
A ( - l ) A(0) A(l) 

(29) 

(30) 
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Discrete convolution can b e modelled as above b y matrix O p e r a t i o n s , or 
algebraically as f o l l o w s . 

(31) 

This is recognisable as a generalisation of the scalar product between two 
vectors. In this case there is a time-reversal and time shift of n samples, as 
shown in Fig. 7. 

x ( m ) 0 - - o m 

Delay 
by n 

Time 
reverse T 

Fig. 7. Convolution processor. 

Simple as it seems, this sum-of-products computation is extremely 
important, as it underlies much innovative engineering in signal processing 
for example, correlation detection and pattern recognition. 

As microprocessor speeds improve it becomes increasingly more feasible 
to implement useful processors of this type by means of real-time S o f t w a r e 

S y s t e m s , so that the appropriate model is an algorithm. For instance, the 
flow-chart for the above filter is given in Fig. 8, and a notional program in 
Fig. 9. 

A graphical model is a useful aid to comprehension: the usual approach 
is to use transparent overlays to illustrate the reverse, shift, multiply and 
add structure of convolution. Computer animation of the process is also 
helpful. This is complemented by an exploded tabular version of the 
algorithm using numerical values, as for example in Fig. 10. 

This approach usefully accentuates the triviality of the convolution 
Operation—it is merely long multiplication without the complication of the 
carry. 

The architectural model corresponding to the tableau of Fig. 10 is 
known as transversal or feedforward or finite-impulse-response (FIR) 
filter. This is shown in Fig. 11. 

There is also a matrix-algebraic model corresponding to signal synthesis 
and system characterisation by system invariants. In the discrete case we 



Discrete Linear System Modelling Techniques 157 

Initialise 
n = 0 , m = 0 

Increment n Increment n 

Clear y(n) 

Increment m 

Input x(m) 

ytn) = y{n) + h{n - m)x(m) 

- ( s t o p ) 

Fig. 8. Convolution algonthm flowchart. 

are considering eigenvectors of the H -matrix: these are the sampled 
exponentials 

e„ = [exp(j2npO/N), exp(j2np\/N) exp(j2*pq/N), . . . ] T (32) 
where H e p = Arep expresses the eigenvector-eigenvalue properties. (33) 

Here N is the Iength of the input and Output vectors, that is 

0 < p,q < N - 1 and dim V = N 

for n = 0 to N 
y(n) = 0.0 
for rn = 0 to n 

y(n) = y(n) + h(n) - m) *x(m) 
next m 

next n 

Fig. 9. Convolution algorithm program 
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so that 

H = E * d i a g H (41) 

where, by virtue of the cancellation of n - 1 IE IE* terms we have 

N 

diag H = f] diag tf, (42) 

Since diagonal matrices form an abelian (semi)group, so too do linear 
Systems. Furthermore, the non-existence of inverses which prevents the 
establishment o f the füll group property, can be related, via determinantal 
analysis, to the singularity of the diagonal matrix and this admits to a 
system-theoretic interpretation (zeros in the frequency response) having 
important practica! ramifications. 

The point about analysis (and synthesis) of discrete linear Systems is that 
it can proceed by way of matrix algebra, which is usually perceived as being 
more comprehensible than the integral transform algebra corresponding to 
the continuous case—partly because appeal can be made to familiär 
geometrical analogies, but also because the discrete case is more amenable 
to illustration with numerical examples and C o m p u t e r aids. 

4. A DESIGN EXAMPLE: DATA SCRAMBLERS AND 
DESCRAMBLERS 

Data scramblers (Bylanski & Ingram, 1980), (not to be confused with 
coders for data compression, error control or encryption) are used in 
digital communication Systems to ensure that the transmitted Signals 
contain sufficient timing information to permit the establishment and 
maintenance of synchronism in the receiver without recourse to providing 
a side-channel wasteful of valuable transmission capacity. The system 
scenario is depicted in Fig. 14. 

SCRAMBLER LIN6 CHANNEL LINE DE-SCRAMBLER 
cooep 

CHANNEL OECOOER SCRAM8LER Y 

Fig. 14. Scrambted data transmission. 

The scrambler usually operates on the binary source data prior to line 
coding, and its purpose is to break up long runs of l 's or 0's which, 
resembling de, would lack strong components at the pulse repetition 
frequency needed for Synchronisation. The device consists of shift-registers 
providing delay and exclusive—OR gates providing modulo-2 addition. 
An example is given in Fig. 15. 

The question is, given such a scrambler, how does one design the inverse 
processor (descrambler) located in the receiver? The quiekest way is to 
recognise that this is a transversal feedforward filter in which both signal 
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D D 

<±>-
Fig. 15. Scrambler architecture. 

values and convolutional weights are restricted to GF(2). Apart from this 
feature, system analysis follows the usual procedure. The time-domain 
model is 

y(n) = hOx(n) where h = [1 , 1, 0, 1J (43) 

y(n) = x(n)®x(n - \)®x(n - 3) (44) 

The spectral representation obtained by taking Z-transforms is: 

Y(z) = X(z)®z'[ X(z)®z~i X(z) (45) 

so that the system response is 

H(z) = ©z- '©z" 3 (46) 

The descrambler must have system response G(z) inverse to H(z) 

G(z) = H\z) = [ l f f i z - ' e z - ' ] - ' (47) 

which can be interpreted in terms of its input-output representations as 

Y(z) [ l © ; - ^ - 3 ] = X(z) (48) 

so that 

Y(z) = X(z)®z~l Y(z)®z'2 Y(z) (49) 

Here we have made use of the identity of addition and subtraction in 
GF(2). The time-domain model is 

y(n) = ,v(n)©.y(n - l)©v(fi - 3) (50) 

This defines the recursive, infinite impulse response (HR) architecture oi 
the descrambler shown in Fig. 16. 

x ( n ) 0 — * — © -Ovi") 

Fig. 16. Descrambler architecture. 

* ( n ) 0 — 
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5. CONCLUSIONS: CHANGING THE EMPHASIS FROM 
CONTINUOUS TO DISCRETE 

Although the foregoing example was selected from the author's own field 
of interest (signal processing), the overall picture is thought to be similar in 
a number of disciplines contributing to the design of information Systems. 
This swing towards the discrete representation of information is obviously 
driven by the use of discrete Systems (such as digital Computers) to 
implement information processing. Accordingly, discrete mathematics is a 
more natural approach, for information system engineers and information 
scientists, than the traditionai one based on continuous mathematics. This 
is not to say that continuous mathematics is now redundant. On the 
contrary, it is essential for the design of continuous Systems such as 
analogue filters and classical control and communication Systems. And 
there are several cases where a discrete signal or system might have a 
continuous representation (e.g. the Z-transform), and a satisfactory 
comprehension of system behaviour is only possible if the associated 
continuous models can be competently handled. Specifically, there is a 
need for continuous mathematics covering the theory of limits, 
convergence, differential equations, integration and complex variable. 
However, these topics should be taught in such a way as to place strong 
emphasis on the relationship between the continuous and the discrete: 
perhaps the only satisfactory way to do this is to introduce the theory of 
generalised functions at an early stage, albeit with an engineering 
emphasis, as in Zemanian (1965). This presents real pedagogical 
challenges, which can only be met by adopting a mature axiomatic 
approach in which mathematics is considered not as a collection of 
supporting techniques, but as the theoretical foundation of information 
technology. 

REFERENCES 
Ayers , F. ( 1 9 7 4 ) . Matrices, Schaum Outl ine Series . M c G r a w - H i l l , p . 1 6 3 . 
Bylanski , P. & Ingram, D . G. W. ( 1 9 8 0 ) . Digital Transmission Systems. Peter 

Peregrinus, p. 2 6 8 . 
Cat termole , K. W. & O'Reil ly , J. J. ( E d . ) ( 1 9 8 4 ) . Mathematical Topics in 

Telecommunications. Volume 1: Optimisalion Methods in Electronics and 
Communications. Volume 2: Problems of Randomness in Communication 
Engineering. Pentech Press. 

Other issues can be decided by exploiting the commutativity of Operators 
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SUMMARY 

The BSc Applied Science degree course at Sheffield City Polytechnic has 
recently been expanded by the inclusion of a subject area entitled 
Computing and Applicable Mathematics. This subject area was introduced 
in response to the need for scientists who are trained not only in the 
traditional analytical and experimental skills but also in Computer 
disciplines. 

We have found case studies invaluable in the teaching of this subject 
area, and in this chapter we report in detail on one such case study which 
we use with our second year students. 

In Section 1 we describe the nature of the Computing and Applicable 
Mathematics course and we set the case study in its teaching context. 

In Section 2 we describe the background, theory and Organisation of the 
case study, and in Section 3 we report on the lessons we have learned in 
running the case study. 

1. 1NTRODUCTION 

The BSc Applied Science degree at Sheffield City Polytechnic is one of 
three degrees which comprise the Degree Programme in Science, the 
others being BSc Applied Chemistry and BSc Metallurgy and 
Microstructural Engineering. All these are thin S a n d w i c h courses which 
include two six-month periods of industrial experience within the four-year 
course duration. 

Part 1 of the courses consists of the first year, spent in the Polytechnic, 
followed by the first period of industrial experience. In Part I the three 
courses are taught totally in common. Each Student chooses a study pattern 
made up of units in the subject areas of biology, chemistry, Computing and 
applicable mathematics, physics, metallurgy/materials science. The units 
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chosen depend upon the student's educational background, interests and 
chosen degree course. This common first year allows considerable 
flexibility in that the students' progression on a degree course/subject 
combination is finally decided at the end of Part I. After Part I the three 
degree courses continue independentJy. 

Part II consists of a further year in the Polytechnic, followed by the 
second period of industrial experience. Students on BSc Applied Science 
study two subjects from the five identified above. These subjects are 
developed further in Part III which consists of the final year in the 
Polytechnic. 

Computing and Applicable Mathematics, which we abbreviate CAM, 
with apologies for any confusion with computer-aided manufacture, serves 
a dual role in the Degree Programme in Science. First, in Part I, it provides 
the foundation of mathematics, statistics and Computing for all students 
irrespective of thetr degree course/subject combination. Secondly, it 
Stands as a subject in its own right within the framework of the BSc 
Applied Science degree. 

2. THE CAM COURSE 

There are two CAM course units in Part I 

CAM 1.1, Basic mathematics, statistics and Computing 
CAM 1.2, Industrial applications of mathematics and Computing 

CAM 1.1 is compulsory for all students. while CAM 1.2 is an optional unit 
designed to illustrate examples of the applications which a Student may 
meet on an industrial experience placement. 

The CAM 1.1 unit provides core material in mathematics, statistics, 
probability and Computing, including programming in a high level 
language. In teaching the course emphasis is placed on the applications of 
the material in science. The mathematical background of the students on 
the course is varied. All have O-Ievel mathematics or its equivalent. Some 
have A-level mathematics. A considerable number enter the course with 
the intention of studying CAM as a major component of their course. 
Others are extremely apprehensive about mathematics in any form. For 
this reason the CAM 1.1 course is taught with sympathy for the needs and 
abilities of the students by, for example. forming teaching groups 
according to the students' chosen major science subjects. Towards the end 
of this unit case studies are introduced to illustrate the nature of 
mathematical modelling and to integrate material covered in the course. 

The case studies in the CAM 1.1 course form the major part of the 
component of the course entitled Scientific Systems Modelling. The 
students are introduced to the nature, role and scope of modelling in 
science and the case studies allow them to follow the modelling process 
through the stages of model formulation in the representation of a 
scientific system, model development and implementation with associated 
Computer programming, model testing and modification. and finally model 
application in the generation of appropriate Output. Subject areas used in 
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the case studies include chemical kinetics applied to consecutive first order 
chemical reactions, and the oscillatory behaviour of a damped mechanical 
System such as a vehicle Suspension. 

In Part 11 of BSc Applied Science course a student may study CAM 
and one other science subject. A very populär subject combination is 
CAM and Physics, but generally all four of the alternative subjects are 
combined with CAM. The course develops core material in mathematics, 
statistics, numerical analysis and Computer methods, but considerable 
emphasis is placed on Scientific Systems Modelling. The methodological 
basis for the modelling of scientific Systems is developed and a framework 
is provided for the Integration of the core course material through 
application example. The Computer methods component concentrates on 
data capture, storage and manipulation, these being essential areas in the 
development of computer-based models in science. As part of the Scientific 
Systems Modelling component the students are required to undertake two 
major case studies. One case study in this area is based on the 
development of an appropriate data structure for a Computer program 
which determines the winter heating requirements of a building. The other 
case study is in the area of mathematical modelling with associated 
Computer program development, and is the case study discussed in detail in 
this chapter. The Part II case studies differ from those in Part I in that in 
Part I the students are carefully led through a fully written up case study, 
stage by stage. In Part II the emphasis is placed on the students' own 
efforts, through both group and individual working. 

In Part III additional core material is introduced in the areas of 
mathematics, numerical analysis and Computing, but the major emphasis is 
placed on Scientific Systems Modelling. The subject matter includes 
control theory and optimisation. Again case studies play a major role in the 
course and these are based on the modelling and control of more complex 
scientific Systems, and the interfacing of scientific and Computer Systems. A 
major part of the students' Part III assessment is a Project. The Project is 
selected from those offered by the contributing departments. Many projects 
span departments and reflect collaborative departmental research 
activities. We feel that the work carried out in the case studies in CAM is 
useful in preparing the students for the final year project. 

Clearly we regard case studies as an essential component of the CAM 
teaching. In the following sections of this chapter we report in detail on our 
experience in running a case study in Part II of the course. 

3. THE CASE STUDY 

3.1 Background to the case study 
The Applied Physics department at Sheffield Polytechnic is involved in a 
comprehensive research program into the mechanical properties of 
polymer foams and their relationship to foam structure. From the point of 
view of the Applied Science Degree, there are several problems arising 
from this research which have the potential for illustrating real world 
applications of physics, mathematics and Computing as part of case study 
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o-(co) = £*(ü))e(cu) 

and final year project material. In choosing material for a Part 11 CAM 
case study, the criteria we wished to meet were that the material involved 
an interesting real world application, was of an appropriate Standard of 
difficulty for second year students, and was sufficiently self-contained to 
make a worthwhile study within the fairly constrained time available 
towards the end of the Part II course. On the basis of these criteria, the 
problem chosen was that of looking at the mathematical modelling of 
vehicle seating—a study which had onginally formed part of a 
collaborative venture between the Polytechnic, B and K Laboratories UK, 
and JCB Research Ltd, and which is outlined in the next section. 

Vehicle seat modelling 
In the last twenty years, polyurethane (PUR) foam has replaced rubber 
latex as a material for vehicle seat cushions. For manufactunng and cost 
reasons, seats composed of a system of Springs and cushions have gradually 
been replaced by füll depth foam sets. With the trend towards enhanced 
Suspension stiffness and lighter vehicles, the properties of foam seats in 
isolating the passenger/driver from transmitted Vibration have become of 
great importance in vehicle design. The mechanical properties of a PUR 
foam may be altered at the manufacturing stage (Benson etat., 1973; 
Patten etat., 1974; Pollart etal., 1974), and hence knowledge of the 
appropriate mechanical properties for a particular vehicle-seat 
combination would enable optimisation of the seat for increased 
passenger/driver comfort. Clearly a useful tool in this optimisation process 
would be a mathematical model capable of predicting the way in which a 
seat manufactured from a foam with known mechanical properties will 
transmit vibrations. Several workers have pertormed experimental 
measurements of Vibration transmission characteristics. both in the field 
and in the laboratory (Griffin, (1978); McNulty & Douglas, 1982; Collier 
etat., 1983). If a mathematical model can be developed which will 
successfully reproduce experimental data then this is a good first stage in 
developing a model for predictive purposes. It is this first stage that the 
case study is concerned with. 

From the several models that have been put forward to reproduce the 
response of the human body to cyclical oscillations (Band etal.. 1970; 
Payne & Wright-Patterson, 1979; International Standard, 1981), a model 
that has been found to reproduce experimental results for the transmission 
of seat vibrations reasonably well is one based on the work of Band et al. 
(1970). This model, shown schematically in Fig. 1, is composed of 3 masses 
and 3 resilient elements with complex moduli and is the model 
concentrated on in this study. 

The labels attached to the parts of the model are intended only as a very 
rough guide, and for schematic simplicity the viscera is shown above the 
head and Shoulders rather than in its physical position. 

A resilient element with complex modulus E*(ai) has dynamic stress 
O(ÜI) and dynamic strain e(o») related by the expression 
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M 3 

VISCERA Suffix 1 

J - SHOULDERS 

SPINE 

- 1 - HIPS 

CUSHION 

suffix 2 

suffix 3 

Fig. I. Schematic diagram of Person-seal model. 

where <a = angular frequency of Vibration of the element. £*(co) thus plays 
a similar role to an impedance in complex AC circuit theory, allowing for 
a phase shift between e and er. lnvestigations by Snowdon (1968), have led 
to the conclusion resilient elements are more suitable for modelling 
body parts and cushions (which behave as distributed Systems) than 
spring-dashpot arrangements (i.e. lumped Systems), which have been 
widely used in this field. The stiffness S'(ca) of a resilient element is given 
by 

5*(u>) = k E * ( w ) 

where k is a constant depending on System geometry. As a first 
approximation the frequency dependence of 5* can be neglected, and we 
can express S* in the form 

5* =S(l+/c5) 

where i . known as the loss tangent, is the tangent of the phase shift 
between the displacement of a resilient element and the force applied to it. 

If the underside of the foam cushion undergoes a displacement A'*, as a 
result of road Vibration, and the three masses have displacements X*, X* 
and X* as shown in Fig. 1, then with the suffices indicated in Fig. 1, the 
forces F*, F\ and F* on the resilient elements are given by 

F! = S F ( * 2 * - * r ) 
F* = St(X*-X*:) 
F; = s n x * - x ' , ) 
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The measure taken of the transmission of vibrations is the 
TRANSM1SSIB1LITY T, defined as 

that is the acceleration feit by the passenger/driver compared with the 
acceleration at the lower end of the seat. By calculating T from the model, 
the Variation of T with (O can be investigated for varying values of M,, S, 
and 6, (I = 1,2,3) and compared with experimental plots of T versus EO. 

3.2 The case study programme 

With the information outlined above, the specific objectives of the case 
study were that the Student should 

(i) derive an expression for T in terms of the M„ S, and 5,, 
(ii) write a program to produce plots of T versus tu for varying values of 

the M, D, and S,, 
(iii) compare theoretical curves for T produced by the program with 

experimental plots, 
(iv) consider the role of modelling in the design of vehicle seating, and 

discuss the advantages and limitations of the particular model used in 
this study. 

The case study was run dunng a four-week period, consisting of a 
2-hour session each week, and, in the final week or so, additional 
supervised time on a BBC ECONET System each evening, for the students 
to use as they needed. At the beginning, each Student was issued with a 
booklet containing in essence (although in a rather more expanded form) 
the information presented in the last section , together with a timetable for 
the Operation of the case study and detail of assessment requirements. To 
gain worthwhile experience within the time available, it was feit necessary 
to place a fairly close structure on the work to be done at each stage. What 
follows is a detailed breakdown of the progression of the study over the 
four weeks. 

Week 1 
The first hour was taken up with the presentation of the vehicle seat 
problem to the students, and an outline of the objectives of the case study 
(we are much indebted to Cole Brothers department störe in Sheffield for 
the gift of an old tailors' dummy—christened Bertha by us—which, after 
suitable modification, greatly facilitated the explanation of the 
mathematical model of the person-seat system). The students were then 
asked to divide themselves into groups of three or four and, by way of 
getting started, have a look at the forced SHM equation to familiarise 
themselves with the idea of finding non-transient Solutions using complex 
phasors. With the idea of complex numbers fresh in their minds, the groups 
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were given the task of deriving the equations of motion for the person-seat 
model in the form 

= SUX* ~ X*) 
M2X*2 = S * ( A * - X!) - St(X'2 - Xt) 
M-JS = 5 J ( A " - XI) -r S*2{X*> - X\) 

and, from these, in the time before the next Session, deriving an expression 
for the transmissibility T in terms of the M„ S, and 5,. The method 
suggested for finding the tranmissibility was as outlined below. 

Since X* is the vibrational input to the seat, if this is of angular frequency 
CD then (disregarding transient responses) A T , X* and X* will be of the 
form 

Xf = X^" * "> 
X* = A V + * 2 ) 

X* = Xfd(M *«> 

where <pu <p2 and <p, are constant phase shifts. The acceleration and 
displacements are thus related as follows, A T = - O J 2 A T , A " J = -m2X\ and 
X' = -o j 2 A't . The equations of motion may now be written in the matrix 
form 

AX = z 

where 

x = ( £ * | , * = ( o ) 
\x,'J {ssx'j 

and 

/ V - Mtu,1 - 5 , * 0 \ 
A = - 5 , * 5 ,* + S2* - M2o>2 -S2* 

\ 0 - 5 2 * S 3* + S2* - M,m2J 

Then, solving for X}* by Gaussian elimination (or otherwise) leads to 

T _ 5 3 ' { ( 5 , * - /vf l t o 2 )(S,« + S 2 ' - M2<o2) - (S,*) 2} 

( 5 , * - M,a,2){(S,* + 5 2 * - M 2 Ü > 2 ) ( 5 , * + 5 3 * - M,<o2) 
~ (S2*)2} - 5 , * 2 ( 5 2 * + S 3 * - M 3cu 2) 

This expression can now be put in a more convenient form for computation 
by substitutmg 5 * = 5 , ( 1 + /<5,), 52* = S 2 ( l + j ö 2 ) , 5 * = 5 3 ( 1 + /<5 3) and 
separating out the real and imaginary parts of the numerator and 
denominator. This process, although in principle straightforward, is 
somewhat tortuous, and leads to the expression 
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where 

RN = M,M 2 S 3 <o 4 - [M,5j5 , ( l - <52<55) + 5 ,S 3 (1 - 5^)(MX + M2)W 
+ S,S2S,(1 - S,S2 - 6,6, - 626,) 

1„ = A/,A/ 25,<5,ÜJ 4 - [A/,S 2S,(<5 2 + <53) + S,S,(Si + <53)(Af, + M2)]to2 

+ S,S 2 S,(<5,+ 62 + <5 3 - <S,<52<5J) 
« u = -Af ^ J W J O ) " + [S 2 (A/ ,/W2 + Af ,Af,) •(- S,(Af ,M, + Af 3 M 3 ) ] Q > 4 

- [(M, + M2 + A/ 3 )5 ,5 2 ( l - 5,rf2)]cu2 + R„ 
1 d = [5 2 5 2 (M,A/ 2 + MiMi) + J , 6X(MXMi + M2M>)]<»* 

- [(Af, + Af2 + Mi)SiS2(Sl + 62)]w2 + 1« 

Week 2 
At the beginning of the second Session, the correct expression for T 
(although not the derivation) were made available to the students to enable 
each group to check the expressions they had derived. 

The purpose of the second Session was then to develop a BBC BASIC 
program to input values of the M,, S, and <5,, calculate T for a ränge of 
frequencies between 1 and 20 Hz, and plot a graph of T versus <d using the 
Acornsoft Graphs and Charts package. The second Session was conducted 
using the same Student groups as the first Session, and the programs 
written at this stage were first attempts to be run, debugged and further 
developed on an individual basis later. 

For the remainder of the case study the students would be working 
individually and so, to round off the group working phase, each group was 
required to submit a report by the third week. The specification given to the 
students for the reports was as follows. 
Group reports should contain an introduction to the case study and include 
the following. 

(1) The role of person-seat models. 
(2) The assumptions behind the particular model considered. 
(3) The derivation of the equations of motion in the complex-number 

formulation used. 
(4) The Solution of these equations giving the transmissibility, T, explicitly 

as a function of a> and the Parameters specifying the system. 
(5) A preliminary version of a program/algorithm for evaluating T for 

specified input values of cu and the System parameters. 

Each member of a group was given the same mark, and this counted as 
40% of the total assessment for the case study. 

Weeks 3 and 4 
After producing a working version of the preliminary program developed 
in week 2, the pnmary task for each Student for the remainder of the case 
study was to compare graphs of T versus u> from the model with 
experimental data. Experimental plots using aeeelerometer 
measurements have been obtained by Griffin (1978) and McNulty etal. 
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(1982) for person-seat S Y S T E M S in several types of vehicle . Four 
experimental plots were used in the case study, these being the plots 
shown in Fig. 2 for a small low-cost 5-door car, a small van, a 12-seater 
light bus and a JCB earth-moving vehicle. 

One plot was issued to each S T U D E N T , ensuring that those who had 
worked together in the same group received different plots. Each Student 

Small low-cosl 5-door car (Halched area; field measurements, continuous line; 
model prediction) 
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Fig. 2. Experimental plots for the rninsmissibilirv in four rvpes of vehicle. 

then experimented with values of the M,. 6, and 5, (within given ranges) to 
produce a plot from the model which matched as closely as possible with 
their experimental plot. The method of opttmising the fit between 
experimental and model plots was left to the individual. although it was 
suggested that it would be helpful if both plots were displayed on the 
screen simultaneously. 

Gritfin (1978) 12-seater light bus 
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The Computing was carried out on an Econet system which enabled the 
Standard Charts and graphs Software to be made easily available to each 
Student and allowed all students programs and graphical Output to be 
stored in one disk. 

One hour of the final two hours was reserved for feedback with the 
students and staff involved in the case study. The purpose of this was to 
discuss what had been achieved by the modelling and what were the 
limitations, and also to discuss the Operation of the case study itself. The 
rest of the final two sessions were devoted to using the Econet system and 
additionally, in the last week and a half, the Econet System was staffed for 
two hours each evening for the students to use as they feit necessary. 

Once a Student found a set of parameters that produced a satisfactory fit, 
the screen with the corresponding graph was dumped on to a file to be 
printed out later on a printer not attached to the Econet system. Finally 
each Student was required to produce an individual report shortly after the 
end of the 4-week period to present the results of the curve fitting exercise. 
The Instructions given for this final report were as follows. 
Individual Reports should contain the following. 

(1) A listing of a working program for producing frequency response 
plots. 

(2) The particular frequency response plot obtained by measure-
ment/experiment to be reproduced by the model. 

(3) The best fit frequency response plot obtained (by trial and error) using 
the model. 

(4) Suggestion for systematically producing a best fit to observed plots. 

This report was worth 60% of the final assessment for the case study. It 
was expected that, in the course of Instruction (3) and (4) above, the 
students would comment not only on the fitting procedure but also 
consider the possibilities and limitations of this type of modelling. 

4 . EXPERIENCE OF RUNNING THE CASE STUDY 

We now report on how the students and staff actually coped with the 
person-seat modelling exercise. 

4 . 1 Group work 
One of the more notable aspects of the case study was the use of group 
work. The case study was undertaken by the students during a four-week 
period with only two hours per week class contact (out of a total of 1 8 
hours per week) and with very demanding deadlines to be met. The only 
way, it seemed to us, that the students were going to complete the work 
required, on time, was by working in groups, in the first two weeks. The 
idea was that by pooling their resources the students would be able to 
complete the initial modelling phase and be able to produce the outline 
program that was required for week 3. 
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The 21 students formed themselves into three groups of 4 and three 
groups of 3. The students were asked to choose their own groups and told 
us afterwards, in the one hour feedback Session, that they had preferred 
having the freedom to do this. It was pointed out that often in the real 
world they would have no say into which team they were assigned. 

All groups met their first deadline, producing their group reports on 
time. The six group marks were as follows: 

Group 1 (4 students) 34/40 85% 
Group 2 (3 students) 29/40 73% 
Group 3 (4 students) 25/40 63% 
Group 4 (4 students) 22/40 55% 
Group 5 (3 students) 23/40 58% 
Group 6 (3 students) 25/40 63% 

Average: 26.3/40 65.8% 

The marking scheme , out of 40, was the following. 

lntroduction 4 marks 
Role of person-seat models 5 marks 
Assumptions behind the model 4 marks 
Derivation of the equations of the model 5 marks 
Expressions for T 5 marks 
Complex number analysis and modulus form 8 marks 
program/Algorithm 5 marks 
Style and presentation 4 marks 

Total 40 marks 

Relevant points to make concerning this group work phase are the 
following. 

(1) On hand to help the students were three mathematicians and 
between one and two physicists for the 2-hour class contact time. This 
is obviously costly as far as staff resources are concerned, but, having 
said this, all staff were kept extremely busy helping the groups. 

(2) The groups, for their part, quickly realised that a division of labour was 
needed in order to meet the deadlines imposed. The word-smiths 
amongst the group concentrated on the introduction, role of 
person-seat models, and the assumptions behind the model. The more 
skillful mathematicians amongst the group worked on the derivation of 
the equations of motion and the expressions for T in complex number 
form. The algebra-crunchers did the complex-number analysis. and the 
Computer buffs worked on designing the algorithm for BASIC 
program. Group reports were handed in often in three or four 
contrasting literary styles (you may well notice similar properties in 
this chapter!). It was stressed to the students that, in compiling their 
group reports, each group member should have appreciation of the 
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entire Contents of the report in Order to be able to undertake their 
individual work successfully. 

(3) The reports themselves ranged from being very good to average. In 
general the Standard of presentation and packaging of the group 
reports tended to lack polish. This, obviously, was due to reports being 
hastily written and the need to put together quickly anything up to four 
different sub-reports. No group, it seemed. took it upon itself to 
appoint a group editor to produce a more homogeneous style. Only a 
few groups used references to good effect, and most tended to rely 
heavily on the case study booklet that had been issued at the 
beginning. 

(4) What the staff noticed at this group work stage was the emergence, 
either by choice or default, of group leaders who organised the 
group's activities. In one or two groups it was clear that some group 
members were doing more work than others. The students realised 
this, too, but no overt resentment was noticeable. Groups seemed to 
take notice of how other groups were getting on and this friendly 
competition seemed to help groups keep to their schedule. There was 
a great deal of groaning and complaining by the students in the first 
week about all the algebra that had to be done. but this was balanced 
by the obvious sense of achievement that a group feit when it obtained 
the correct expression for the real or imaginary part of the 
denominator of T for example. The students certainly became totally 
engrossed in the Case Study, and worked as teams committed to 
achieving their goal. 

(5) lt was noticeable how students used the staff resources available to 
them selectively. They quickly singled out, as they saw it, staff who 
were good at modelling, or at algebra crunching, or at program design 
and so on, and soon, more by accident than by design, staff were role 
playing. The roles staff played tended to reflect very much the roles 
they had played in producing the case study booklet and in working up 
the case study in its initial stages. 

Before considering the individual work that the students undertook in the 
remaining two weeks of the 4-week period, it is interesting to report on 
how the students wanted the group work to be assessed. The students were 
offered two choices: the group report would be marked and each group 
member would receive that mark, or the group report would be marked 
and each group would take it upon themselves to allocate the marks 
amongst members as they feit was appropriate. They seemed interested in 
the latter idea, but opted for the former after some discussion. All the 
students seemed happy with the 60/40 split in marks between individual 
and group work assessment. 

The group reports were all triple marked and handed back to the groups, 
with detailed comments and criticisms, at the start of the final week. This 
gave the students plenty of time to incorporate this feedback of 
information into their second and final (individual) report. This is hard 
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work for the staff, but essential for students who obviously do not wish to 
repeat mistakes and who genuinely want to improve on their first mark. 

4.2 Individual work 
At the start of the third week the students each had an algorithm designed 
to evaluate T for a ränge of frequencies and values of the parameters Af,, 5, 
and <5,, and field data on four different types of vehicle were made 
available. The idea was that each person in a group would work at 
achieving a model fit to data for a given vehicle, and thus have the 
opportunity of producing something individual whilst still being able to 
consult group members about any programming problems, for example. 
The fit was achieved using graphics and seeing what effect altenng 
Parameters had in the model. A typical example of a fit obtained is shown 
in Fig. 3. 

3f 1 1 1 1 1 — i — I — I — I 1 

By and large this part of the case study worked very well and all 
students, save one, managed to achieve their own fits. The one Student 
who did not, blatantly plagiarised someone eise's results and was marked 
down accordingly in his final report. A summary of the marks for the 
individual reports is shown in Fig. 4. 

The highest mark was 54/60, i.e. 90% and the lowest was 19/60, i.e. 
32%. The mean mark was 41.7/60, i.e. 69.4% and the spread in marks, as 
measured by the Standard deviation, was 7.9/60, i.e. 13.1%. 

The marking scheme adopted (out of 60) was the following. 

3 5 1 0 2 0 
F r e q u e n c y / H z 

Fig. 3. Typical fit to data. 

Program listing 
Display of experimental data 
Best fit to experimental data 
Discussion of methods for a systematic fit 
Presentation and style 

5 marks 
5 marks 

25 marks 
15 marks 
10 marks 

Total 60 marks 
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Fig. 4. Summary of marks for Ihe individual reports. 

With the students already having had the benefit of feedback on their 
group reports it was decided to increase the relative weighting given to 
presentation and style and by and large the Standard of presentation did 
improve. 

The major points that arose out of this part of the case study were as 
follows. 

(1) Students (and staff!) took a little time getting used to (what was then) 
the new Econet system (how, for example, was a screen dump 
obtained?). Some frustration with BBC BASIC showed itself at times, 
but things soon settled down, and students quickly discovered why 
there is a copy button on the Beeb for example. Quite a few students 
soon found out that their programs had not been written all that 
efficiently. They realised, the hard way, that repeatedly evaluating 
what were constant polynomial coefficients, in the plotting of T for 
different a> values, was much slower than first evaluating these 
constants and repeatedly using their stored values afterwards. 

(2) Most students seemed impressed by the power of Computer graphics in 
producing a visual fit to data points. They soon became familiär with 
the sensitivity of T to changes in the fitting parameters, and fairly 
quickly were able to obtain reasonable fits. In their first year the 
students had seen nonlinear least S q u a r e s in action, and all agreed that 
the visual approach of using graphics was much easier to appreciate 
and understand, and certainly much easier to set up. 

(3) Whilst being impressed with the graphics, students and staff were not 
too impressed with the hardware. In the hot steamy atmosphere of the 
modelling sessions, the hardware seemed increasingly to crash and 
respond with Not Listening. Whether t h i s was an actual overheating 
problem or not was never properly ascertained, but it did cause a deal 
of frustration, and the inevitable groans as the writing up deadlines 
drew nearer. In the one hour feedback Session at the end we did 
manage to convince students that hardware problems were all part and 
parcel of modelling, and no less of a problem outside the Polytechnic 
in the real world. 
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(4) As in the initial stages of the case study, students again tended to use 
staff help selectively, and the time of those staff who were familiär with 
the ins and outs of the BBC micro was at a premium. As it turned ou t , 
the additional use of the Econet system in the evenings of the final 
week proved very populär with students, and even the HoD did a stint 
of supervision to help out. 

(5) From the staff point of view it had been time consuming getting to 
grips with the new hardware and Software. This coupled with the 
marking of the group reports, and the extra Econet supervision in the 
final week, gave staff something of a busy time. 

(6) As for the reports submitted by the students, these were a little more 
polished than the group reports. The average mark was marginally up 
from 66% to just under 70% and some reports, despite the short time 
scale involved, were actually word processed and one was neatly 
bound. Typical reports were between ten and twenty sides of A4 and 
generally conveyed an air of enthusiasm for the case study. 

5. ADVANTAGES AND PITFALLS OF CASE STUDIES OF THIS TYPE 

What follows is a list of advantages and pitfalls. 

5.1 Advantages of using case studies 
(1) As well as motivating the students, by their seeing mathematics in 

action, case studies of this nature can provide the ideal vehicle for 
reinforcing and integrating mathematical and modelling ideas learnt so 
far. Here, for example, was a problem that brought together 
modelling, complex numbers, linear Systems, matrices, model fitting 
ideas, programming, and so on. 

(2) In a similar vein, case studies of this type provide an ideal opportunity 
for a Student to feel that he has actually achieved something major 
using his mathematics and modelling skills. He has gone and dirtied his 
hands tackling a real problem, and he has taken the problem through 
from start to finish. He has seen how complex real problems can be, 
but he has coped with the complexity by writing his own program and 
using prepared Software to help him. A Student who achieves things 
becomes motivated and will, hopefully, go on to achieve greater 
things. 

(3) In addition to developing a zeal for the subject and reinforcing 
mathematical ideas, case studies such as this offer the opoportunity for 
group work and all that this entails. Students see how important 
Organisation, division of labour, team-work, and so on can be when 
faced with tackling an ambitious problem within a fairly rigid set of 
constraints. Case studies can certainly help to develop a student's 
initiative and organisational skills, and allow him to see himself in 
perhaps a new light within his peer group. 

(4) On the student/staff front, case studies provide the ideal opportunity 
for staff and students to get to know one another better on a 
semi-formal work-centred basis. 
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5.2 The pitfalls 
(1) It is hard work mounting a case study such as this from Scratch. Real 

Problems, being tackled at the research level, cannot always be readily 
brought down to a 2nd year teaching level without a great deal of 
careful planning beforehand. Tight marking deadlines, too, mean that 
staff have to be Willing to put in an appreciable amount of time in 
making such case studies a success. There is therefore the potential 
pitfall of underestimating the amount of effort required. 

(2) There is always the problem of trying to do too much in too short a 
time with the students, and instead of motivating them and developing 
their enthusiasm for the subject they are switched off. Certainly this 
case study would have been impossible in the time available had a 
considerable amount of new mathematics or modelling ideas been 
required. 

(3) Finally, a Student can only feel happy about what he is doing if he 
knows exactly what is expected of him, and how much of bis efforts he 
needs to Channel into achieving the various objectives in his remit. We 
feel that a case study could go seriously wrong if the student's remit 
(given that he is working to a tight schedule) is not spelled out in 
detail. We also recommend that before any report writing takes place, 
the students are made aware of what the likely marking scheme is to 
be. Failure to be precise about what exactly is required of the Student 
can, in many ways, detract from the advantages to be gained using 
case studies in the tecaching of mathematics and modelling. 
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SUMMARY 

The problem of the management of a forest subject to the risk of fire gives 
rise to some simple models which can be profitably used in a mathematical 
modelling course. The problem can be modelled at two levels: (a) that of 
the Single stand, and (b) that of the 'whole-forest'. The stand level model 
presented is in continuous time and provides some analytic results with 
interesting economic interpretations. The forest level model is in 
discrete-time and the results from it are numerical. The mathematical 
techniques used in the stand level analysis include simple probability (the 
Poisson process), geometric series and calculus. The forest level model is 
formulated using a stochastic difference equation and a n approximately 
optimal feedback S o l u t i o n is found using linear programming. The results 
of the analyses at the two levels are complementary. 

1. INTRODUCTION 

A real-life problem that lends itself to being modelled mathematically in 
more than one way is particularly useful in the teaching of the applications 
of mathematics. Not only may it provide examples of the use of several 
different mathematical techniques, but also the results of the different 
analyses can be compared. Serious discrepancies in the results can point the 
way to model inadequacies, while complementary results from two 
different models will lend considerable weight to their credibility and to the 
credibility of the conclusions that are drawn from them. 

One such area of application that I have encountered in my own research 
concerns the problem of assessing the effects of forest fire on forest yield 
and forest harvesting policies. The problem can be modelled at two levels: 
(a) that of the S i n g l e stand, and (b) that of the 'whole-forest' comprising 
many S t a n d s of different ages. 1 have found it convenient to model the 
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Single stand in continuous time and the whole-forest in discrete time. In 
teaching, this provides a useful illustration of how a discrete-time 
formulation is more convenient in some instances and a continuous-time 
formulation more convenient in others. 

The mathematical techniques involved in the two levels of modelling are 
quite distinct. In the stand-level model the techniques associated with 
geometric series and simple probability theory (the Poisson process) are 
used. In the forest-level model dynamic equations for the evolution of the 
forest subject to fire, are used. These are formulated in matrix terms. The 
notion of feedback control for stochastic dynamic Systems arises, and a 
procedure for determining approximately optimal harvests can be found 
through the use of linear programming. 

The economic phenomenon of time discounting occurs in both models; 
in continuous-time form for the stand-level model and in discrete-time 
form for the forest-level model. While mathematical analysis of the 
stand-level model leads to some general conclusions with economic 
interpretations, the results of the forest-level analysis are essentially 
numerical. Pedagogically this provides a useful illustration of the different 
kinds of Output that can be expected from mathematical models. It turns 
out that the results of the two levels of modelling are complementary in the 
areas where one would expect. 

In the next two sections a brief description of the models and some 
results are given. For the sake of brevity much of the mathematical detail is 
omitted. Emphasis is placed on the aspects of the models which are of 
pedagogic interest. 

2. STAND-LEVEL ANALYSIS 

Suppose that a stand of trees of age a growing on a site has a net stumpage 
value (value of timber net of cutting and transportation costs) of V(a). 
Suppose further that a stand is cut whenever it reaches some rotation age, 
T, and that the site is then subsequently replanted with trees of similar 
growth characteristics. If costs of Clearing and replanting the site after a cut 
are c,, then the total present (discounted) value of the stream of revenues 
(and costs) from the site (starting with a newly planted site) is 

ie-"'W)-c) ( 1 ) 
where 6 is the instantaneous discount rate related to the per annum 
discount rate /', by 6 = ln(I + i').' The above present value is known 
traditionally as the land expectaüon value (LEV) (see e.g. Clark, 1976, 
p. 259). The expression (1) is a geometric series and can be summed to 
give 

LEV 

In Ihe classroom some discussion of present value, (ime discounting and the relationship 
between the appropriate rate for annual compounding and instantaneous compounding (such 
as that in Clark, 1976, p. 69) might be necessary at this point. 
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The optimal rotation age can be determined by setting the derivative of (2) 
equal to zero. Thus the optimal rotation age T* solves 

v , ( r ) = W ^ ) ( 3 ) 

This result is known as the Faustmann formula (Faustmann, 1849). An 
economic interpretation of the result can be obtained by multiplying both 
sides of (3) by an infinitesimal time h and re-expressing it as 

V(T)h = 6h(V(T) - c,) i f t Y e-iT(V(T) - c,) (4) 
ZI-1 

again using the formula for the sum of a geometric series. The term on the 
left represents the growth in the value of a stand of age T during the 
infinitesimal time h if cutting does not take place. The first term on the 
right represents the growth in value of the revenue earned (interest) 
through cutting the stand at age 7", while the second term (which is 
Sh x (LEV)) is the incremental growth in the value of the site (i.e. the 
interest that could be earned on revenue obtained through selling the 
site). Thus, optimally, one sets the rotation age to the age where the growth 
in value of the stand through not cutting equals the growth in the value of 
revenue that could be earned through cutting the stand and selling the site. It 
should be pointed out in the classroom that results such as this, where 
marginal growth rates are equal at the optimum are common in the models 
arising in microeconomic theory. 

Suppose now that Stands are destroyed from time to time by fire. 
Suppose that subsequent to a fire, costs c, of Clearing and replanting the 
site are incurred, and that after replanting, a new stand will grow. A typical 
evolution of site might look like Fig. 1. We need some probabilistic model 
for the occurrence of fires. The simplest possible model is that fires occur 
independently of one another (in time) and at random (in time), i.e. that 
fires occur in a Poisson process (see e.g. Devore, 1982, p. 118). If we 
denote the times between successive destructions of the stand (either by 
fire or by cutting) by Xu X2,. . ., then the „Y,'s are independently identically 
distributed random variables with cumulative distribution function (cd.f . ) 2 

given by 

F(x) = pr(Xsx) 
1 - e"", x < T 
1 x , T <5> 

(where X is the average rate of fires in the Poisson process), i.e. the times 
between successive destructions have an exponential distribution, 
truncated at = 7" and with an atom of probability of size e~ ' r at X = T. 

2 Most students with an introductory course in Probability or Statistics should be familiär with 
the notion of a c.d.f. and the fact that the interamval times in a Poisson process have an 
exponential distribution. If not the derivation from the Poisson postulates provides a good 
example ot the use of the c.d.f. (see e.g. Devore, 1982. p. 154). 
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4r+x+y 

Fig. 1. Possible evolulion of a site. In rotations 1, 2 , 4, 5 and 7 the stand grows 
until the cutting age T. In rotation 3 it is destroyed by firc at age J: and no harvest is 

realised. Similarly in rotation 6 it is destroyed by fire at age y . 

Associated with each destruction of a stand there is a revenue, Y. For the 
n l h destruction the revenue is 

V(T) 
iiX„<T (fire) 
if X„ = T (harvest) (6) 

The expected (discounted) present value of the random stream of revenues 
from the site (the land expectation value) is 

LEV = E (7) 

Since Y„ is independent of X], . . . , A"„.| (but not of A"„), (7) can be written 

LEV = £ E(e«x>+ •••+*«-»)E(e-ix"Y„) (8) 

After some Integration and again using the formula for the sum of a 
geometric series, (8) can be summed to give: 

LEV 
(J + <5) (V(r ) -c , )e 

6(1 - e-^i,T) (9) 

(See Reed, 1984 for details.) The optimal cutting are T* can be obtained 
by setting the derivative of (9) equal to zero. That is 7"* satisfies 

v m = ( k + S ) ( V { T ) ~ C l ) 

K ' 1 - e l " » ) T 
(10) 

This is of the same form as the Faustmann equation (3), with the discount 
rate 6 replaced by X + &. From this it can be seen that the effect on the 
rotation period of a risk of destruction by fi re is the same as that of adding a 
premtum to the discount rate ofan amount equal to the average rate at which 
fires occur. 
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An economic interpretation to (10) similar to that in the no-fire case can 
be given. Multiplying both sides by an infinitesimal time h, (10) can be 
expressed as: 

V ' ( 7 > ( 1 " M) + [~V(T) + c , -c,]Xh 
= 6h[V(T) - c,] + 6h LEV(7-) + o(h) (11) 

The r.h.s. is the same as the r.h.s. of (4) and represents the growth in 
revenue (interest) that could be earned, in the time increment h, through 
cutting the stand and selling the site, while the l.h.s. represents the expected 
growth in value of the stand given that there is no cut. To see this the l.h.s. 
can be written in terms of conditional expectation as 

£(growth in value of stand with no cut/no fire) pr(no fire) 
+ £(growth in value of stand with no cut/fire) pr(fire) 

since in an infinitesimal time increment of length h the probability of a fire 
(an event in a Poisson process) is Xh. 

The results above are all theoretical in nature and relate only to the 
optimal rotation age T*. To determine the effect on land expectation value 
of the presence of the risk of fire, numencal methods must be used, since in 
general Solution to (10) can only be carried out numerically. A suitable 
classroom approach is to plot the LEV (10) as a function of T for various 
rates of fire X. An example is shown in Fig. 2. The growth curve used was 
that for a hectare of spruce growing in the Fort Nelson region of NE British 
Columbia (see Reed & Ernco, 1985a, for details) and the per-annum 
discount rate was 3%. It can be seen how an increase in the rate of fires X 
causes a small reduction in the optimal rotation age T*, but a considerable 
reduction in the land expectation value. In particular with a fire rate of 
X = 0.005 (on average one fire every 200 years) the LEV is reduced to 
approximately 50% of its value with no fires present. For fire rates in 
excess of X = 0.0104 (one fire every 96 years) no net rent can be extracted 
from the resource in the long-run. The historical rate of fires in the region 
is estimated to be about X = 0.013. 

Of course the results above depend on the parameter values used. A 
useful homework exercise is to ask students to repeat the analysis for 
different values of the discount rate parameter 6 and the cost parametersc ( 

and c2, and to determine the sensitivity of the results to these various 
Parameters. 

Another useful exercise is to ask students to criticise the model in terms 
of the realism of its assumptions and other shortcomings, such as important 
aspects omitted. Some of the things that they might come up with. such as 
age-dependent fire probabilities, the possibility of partial salvage after a 
fire etc., can quite easily be handled (see Reed & Errico, 1985a). Other 
difficulties such as uncertainties Over future stumpage values (dependent 
on price and demand for lumber), uncertainties (Statistical and otherwise) 
over the growth characteristics of current and future Stands and 
uncertainties over future fire probabilities etc., can less easily be handled 
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mathematically. This could lead to a useful discussion on the role and 
limitations of mathematical modelling in general. 

If one is very lucky a Student might criticise the model along the 
following lines: 

A forest or timber supply area for a mill centre will typically comprise 
many Stands. If each stand in the forest is independently managed in an 
optimal fashion, the flow of timber to the mill will likely be very erratic, 
especially in Western North America, where there is much old growth 
timber still to be cut. Clearly a more stable flow of timber would be 
preferred. How can one incorporate this into the mode l? 

The answer to such a fortuitous question would be that one needs a 
forest-level model to accommodate this aspect. In the next section, such a 
model, formulated in discrete time is discussed. 

3. A FOREST LEVEL MODEL AND ANALYSIS 

Let the vector x, = {x',,x'2,. . . j ' k } ' denote the areas in the forest with trees 
in age classes 1, 2, . . . ,k at the Start of penod t , and let the vector h, = {h[, 
h'2, . . . ,h'k}' denote the areas harvested in each of the age-classes 1,2 Ac 
in period t, Let v' = (v,,v 2 , . . ., vk) denote the average volume per hectare 
of Stands in age-classes 1 , 2 , . . . , k. Then the total volume harvested in 
period I will be H, = v'h,. 

Suppose now that ö1,, ff2, . . . , ffk are random variables representing the 
proportions of the areas destroyed by fire in age-classes 1, 2, . . ., k in 
period t. A dynamic model for the evolution of the forest is given by the 
stochastic difference equation 

x , . , = R,x, - 5,h, (12) 

where R, and S, are random matrices: 

R, 

9', 

l - 0', 

i - ei (13) 

5 , = 

- l + e\ 
1 - 9', 

-1 + 6", 

1 - 9, 

1 -

- l + i 

1 - Öl 

The appropriateness of this model can be checked by multiplying out the 
r.h.s. of (12). It will be seen that the area, in age-class 1 at the Start of 
period t + 1 comprises those areas harvested in period t, plus the parts of 
those areas not harvested, that are destroyed by fire. The area in age-class 
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2 at the start of period I + 1 is the area formerly in age-class 1 which was 
not harvested nor burnt. Note that it is assumed that age-class k comprises 
all Stands of age greater than k periods. 

The expected (discounted) present value of the stream of volumes 
harvested is 

J = £ (14) 

where a is the per period discount factor, and is related to the per annum 
discount rate by or = (1+i) °, where a is the length in years of a period. 

To ensure a degree of evenness in the flow of timber from the forest, 
harvest flow constraints could be imposed. For example, we might have 
constraints 

(1 - y , ) v V . « Vh, s ( , + , , ) V t = 2, 3, . . . (16) 

which would ensure that the percentage change in volume harvested from 
period to period would lie within specified bounds. 

We could look now for an optimal policy to maximise (14) subject (12), 
(16) and constraints of the form 

0 « h , « x „ t = l , 2 , . . . (17) 

This is a problem in stochastic control since the dynamic equation (16) is 
stochastic. For students with some familiarity with control theory the 
difficulties of finding Solutions to stochastic control problems could be 
discussed at this point. For example, the use of dynamic programming and 
its limitation because of the problem of dimensionality could be discussed. 
In any case it should be pointed out that the optimal policy for this 
stochastic control problem will be of a feedback nature. That is that the 
optimal harvest h* in period / cannot be determined prior to period t, but 
will depend on the current State x, and on previous harvests and States 
(possibly). 

Exact Solution to the control problem cannot be obtained but an 
approximately optimal Solution can be found using the principle of 
cenainly equivalence (see e.g. Chow, 1975). To do this one replaces the 
stochastic equation (12) by the deterministic equation 

x,., = Rx, - 5 h , (18) 

where R and 5 are the expected values of the random matrices R , and 5,, 
and then solves the resulting deterministic control problem. The optimal 
first period harvest for this problem is determined and after this harvest has 
been made, and the random fires have occurred, the new State x 2 is 
observed. One then repeats the above procedure using x 2 as the initial State 
vector to determine the harvest h 2. One then continues to iterate the 
procedure solving a new deterministic control problem at each step (see 
Reed & Errico, 1985b for details). 
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The deterministic control problems that have to be solved are of the 
form, maximise (14) subject to (16), (17) and (18). To find a S o l u t i o n one 
can first replace the objective (14) by one with a finite time horizon 

N 
J ' ^ a V ' h . + i » " ^ , , , ( 1 9 ) 

where r - (rur2, . . . ,rk) is a vector of expected present values of Single 
hectares of forest in age-classes 1, 2 , . . .,k (determined from a S i n g l e stand 
model). 

The problem of maximising (19) subject to (16) (17) and (18) is linear (in 
the x, and h,) in both its objective and constraints and thus can be solved by 
linear programming (LP) using for example the Revised Simplex 
Algorithm (see e.g Childress, 1974). As an exercise students can be asked 
to write out the tableau for the LP problem. 

In Fig. 3 paths (a) and (b) show t h e sequence of values of H, = v'h, for 
two such S o l u t i o n s corresponding to a zero fire probability (a) and a 1 % per 

« 4 

5 ic 15 T me laecadest 

Fig. 3. Volurnes harvested over time with a per annum discount rate of ?% Path 
(a) shows the optima! hurvest sequence when there is no nsk of fire. Path (b) 
show the predicted harvest sequence when there is an (3ge-dependent) probability 
of fire of 1% per annum. Path (c) shows one actual' sequence of harvests using 
the certainty equivalence procedure. discuised in the text and using a random 

number generator to generale fires with a 1% per annum probability. 
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annum fire probability (b). The latter path can be regarded as an estimate 
or prediction of future volumes harvested under optimal management if in 
fact a 1% fire probability prevails. Path (c) shows an 'actual' sequence of 
harvests obtained using the certainty equivalence procedure above, and 
using a random number generator to simulate fires with a 1% per annum 
probability of occurrence. Although this is only one possible sample path 
of many, it can be seen that in this case the Solution to the deterministic 
problem (path (b)) provides a good prediction of future harvests. 

Numerical comparisons between the results of the stand-level and 
forest-level analyses can be made. In the forest-level model, in steady-state 
(after about twenty decades in the example) the harvest flow constraints 
are non-binding and each stand is effectively managed independently. The 
long-run average yield per annum per hectare can be compared with that 
for a single stand model. A very close agreement has been found (see Reed 
& Errico, 1985 (b)) the only differences being due to the different 
(discrete/continuous) time formulations. On examining the harvest 
schedules in steady-state in the forest-level model one finds that areas are 
harvested as soon as trees reach a given age. To the nearest decade 
(discrete time unit) this age agrees with the optimal Single stand rotation 
age. 

These points of agreement between the models should be emphasised in 
the classroom. While they do not guarantee that the models are an accurate 
representation of reality, they do offer reassurance that the mathematical 
techniques of analysis, and the subsequent calculations, are correct. 
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Case Studies and CAL in 
Engineering Mathematics 

M . S t e w a r t T o w n e n d 
Liverpool Polytechnic, UK 

SUMMARY 

Various recent reports, for example, Lighthill (1979), Finniston (1980) 
and Cockcroft (1982), stress the need for mathematics to be presented to 
students in a way which they perceive to be relevant. 

This chapter describes an attempt to achieve this for mechanical 
engineering students through the use of engineering related case studies. 
CAL packages and numerical Software libraries. 

The advantages, disadvantages and implications of such a teaching 
technique are discussed. A suite of successfully used examples is appended. 

1. INTRODLCTION 

Modern Engineering needs Mathematics 
What sort of Mathematics? 

Applied Mathematics—Applied in the sense of how mathematical 
formulation of physical laws can be effectively applied to practical 
Problems. 

Teaching must be constantly permeated with concrete examples 
(enhances motivation). 

We must communicate the techniques used to represent an engineering 
system in mathematical terms. 

The Solution of the problem itself is not a difficulty due to computational 
facilities. 
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These ideas can be best communicated through project work involving 
'real world' problems. 

J. Lighthill, Bulletin IMA, April, 1979. 

After their own engineering specialism, mathematical ability is the next 
most important skill required by engineers. 

Despite this, it is a fair generalisation to say that prior to the information 
technology explosion the usual mathematics course offered to 
undergraduate engineers consisted of a catalogue of analytical techniques 
which provided closed form Solutions to problems which had been 
deliberately contrived to possess closed form Solutions. Such was the level 
of simplification used in some of these examples that even if the original 
problem were of engineering interest, the Solution bore little or no relation 
to it.' 

As Lighthill (1979) observed, we must teach our students to apply 
mathematics effectively to their problems. To do this requires more than 
skill in 'technique bashing' (although this has its place); it requires the 
ability to formulate the problems mathematically, solve the mathematical 
problem and then assess the value of the Solution. In short it requires the 
skills of mathematical modelling. 

Of course our engineering colleagues develop their students' engineering 
modelling skills within the parent department. This background can be 
exploited in the mathematics courses through the modelling and Solution of 
further engineering problems. 

Due to the rate of change of technology which today's students will 
experience during their professional career, very few of the methods which 
we teach them will still be current in ten or twenty years time. It is thus 
paramount that our teaching should go beyond mere techniques, and 
should additionally impart to the students some idea of the thinking behind 
the mathematical formulation of their engineering problems. We must 
teach them to teach themselves, for the real world problems which they 
may encounter will not always match neatly one of their undergraduate 
exercises! 

Matters are further complicated by the fact that currently one is trying to 
attain the objectives while preparing the students for a 
conventional written examination of a traditional mathematical methods 
syllabus. Based on my experiences with the first and second year of a BSc. 
Mechanical Engineering course I am confident that all these objectives are 
attained through the use of case studies and CAL sessions to augment 
formal lectures and tutorials. 

2. USE OF CASE STUDIES 

The reason for using a tutor-driven case-studies approach, to illustrate the 
mathematical methods contained in the syllabus, rather than a 
student-driven modelling approach is the logistical and resource 
constraints. The class upon which this report is based contains 55 students 
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3. USE OF CAL AND SOFTWARE LIBRARIES 

Concurrent with the development of case studies and modelling exercises 
for teaching mathematics to undergraduates has been a dramatic increase 
in the availability of interactive Computing facilities, good Software 
libraries such as NAG (see Appendix 11), and CAL packages such as 
CALNAPS (see Appendix II). These are fully exploited in the case 
studies examined and enable the students to progress from a possibly 
unrealistic, closed form, Solution to obtain more realistic Solutions without 
the tedium of laborious algebra or repetitive numerical calculations. Since 

and, even with some tutorial assistance from two colleagues, a modelling 
approach is not consrdered feasible given the need concurrently to prepare 
the students for a conventional written examination. 

The students are encouraged to participate in the case-study sessions as 
much as possible, and I act as arbiter and secretary. The major difference 
between this aprproach and that of mathematical modelling is that I, at 
least, have a clear idea of the likely form of the resultmg problem 
formulation. Indeed some of the case studies are designed to lead to a 
particular formulation as a raison d'etre for the inclusion of a specific topic 
in the mathematics syllabus. 

I admit that this is not the best way to proceed but given the class size 
and the current timetable and syllabus constraints it represents a 
reasonable compromise. 

Appendix I contains a suite of case studies which have been used with 
the students, together with an indication of the mathematics required. 
Student reaction has been favourable with much comment about the extent 
to which the mathematics course has been integrated with their engineering 
studies; this has enhanced their motivation in both their engineering and 
mathematics courses. Case studies such as the Vibration problems 
contained in Appendix I lend themselves quite naturally to the idea of a 
sensitivity analysis which can rapidly be performed using some of the 
numerical Software which is available to the class. 

The product of this teaching approach is a Student who has some skill in 
formulating engineering problems in mathematical terms, a ränge of 
techniques for their Solution, and an awareness of the need to assess the 
quality of the Solution. Düring the academic year, the students are required 
as part of the course-work assignments to produce a written report on one 
or two case studies, in the same style as a laboratory report, in order to 
develop their communication skills—often a serious weakness in 
undergraduates, as reported by McLone (1973). Looking ahead, 1 hope 
that the benefits of this teaching approach will be recognised by the parent 
department, thus permitting a change to a modelling approach linked 
even more closely with the students' engineering studies. Such recognition 
will require additional timetabled hours or a reduction in content of the 
mathematical methods course together with additional staff assistance. 
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the results are relatively easily obtained via the computational facilities, it 
is reasonable to expect the Student to address such additional questions as 

— how sensitive are the results to changes in the parameters or 
conditions? 

— is the Solution stable? 
— is it sensible? 
— is it accurate? 
— do 1 believe it? 

Attention to questions such as these is considered to add an important 
extra note of reality to the exercises. 

The CAL package used with our engineering students is called 
CALNAPS and was originally developed at Kingston Polytechnic (see 
Appendix 11). It consists of three programs which can be used for the 
teaching/learning of topics in engineering mathematics such as 

— Solution of linear simultaneous algebraic equations, 
— numerical Integration, 
— Solution of initial value problems. 

The package provides the user with the opportunity to select both a 
problem and a method of Solution from two menus; alternatively the user 
can specify his own problem. Once the Solution has been obtained, the user 
can select the method of presentation of the results (either tabular or 
graphical) and also the content of the results (Solution values, absolute or 
relative errors), and so on. The package is user friendly, with many 
opportunities built in to access a helpfile for additional information and 
guidance. 

Once the students have been introduced to a numerical topic in their 
lectures, the package has then been used successfully to lllustrate various 
numerical properties associated with that topic. For example, the class may 
have had some introductory lectures on the numerical Solution of initial 
value problems using elementary methods such as Euler and second order 
Runge-Kutta. Time constraints restrict the students' hand calculated 
efforts to the development of only a couple of steps of the Solution, using 
one or two different step sizes. The students are then introduced to 
CALNAPS, and use it interactively to experiment with a ränge of methods 
and/or step sizes applied to a variety of initial value problems. In this way 
they quickly develop a feel for the significance of the order of a method, 
the sensitivity of the Solution to the step size, and the concepts of stability 
and convergence. 

The other programs in the package can be used similarly; for example, 
the algebraic equations package can be used to demonstrate the virtue of a 
pivoting strategy (the package permits inspection of each stage of the 
elimination process) and the concept of ill condition. 

The students can obtain a print out of their terminal session, which is 
used to support the analysis of the methods in subsequent lectures. 
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Some of the case studies presented in the course can be formulated as a 
mathematical problem with one of the areas covered by the CALNAPS 
package. Once the students have become familiär with the workings of the 
package, which experience has shown only takes about one hour, they can 
use it to generate their numerical Solution to the case study. Not all the case 
studies fit into such a small sub-section of undergraduate numerical 
methods, and there is a need for expertise in the use of wider ranging and 
more robust Software; the material currently used for this purpose is the 
NAG library. This was chosen since the routines contained therein are well 
documented, efficient and representative of some of the numerical 
techniques currently used in industry. Their use thus provides the students 
with experience likely to be of benefit in their subsequent professional 
careers. 

The NAG library is divided into chapters according to the nature of the 
problem to be solved (e.g. quadrature, interpolation, roots of one or more 
transcendental equations, ordinary differential equations). Each chapter 
follows a similar pattern of introduction, a list of available routines, 
selection of a routine for the user's problem, and documentation of each 
(including an example coded in both FORTRAN and ALGOL). 
Consequently, only one chapter is discussed in detail, and the students are 
taught how to use the mainframe Computer to locate systematically a 
routine suitable for their particular problem by responding to an intelligent 
database with keywords. 

Appendix III contains a suite of exercises and case studies wbich have 
been used in conjunction with CALNAPS and NAG. 

4 . REACTIONS 

Student reaction to CALNAPS and NAG has been very favourable. 
CALNAPS has proved especially populär with the students, as they have 
been able to see for themselves the answers to the 'What if... ?' type of 
questions they have askd in class, without the need to spend several hours 
with a calculator. The scope and power of the NAG library has also made a 
considerable impression, clouded only by the difficulties which some 
students encountered in interpreting the generalised FORTRAN coding of 
the NAG manual. Nevertheless several Student groups have requested 
'more NAG and earher in the course' in order that they can use it more 
extensively in connection with their engineering studies. 

5. CONCLUSIONS 

In addition to the conventional lecture and tutorial teaching techrüque, 
case studies are integrated into the timetable in order to relate the contents 
of the mathematics syllabus to the mainstream engineering studies through 
the Solution of a variety of engineering problems. Experience has shown 
that this increases motivation. 

The ränge of case studies presented is sufficient to communicate the 
techniques used to represent engineering problems mathematically. 
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APPENDIX 1: CASE STUDIES IN ENGINEERING MATHEMATICS 

Vibration absorption The damping of the vibrations of the car deck of a 
car ferry and discussion of the difficulties associated with the Variation of 
frequency of the vibrations due to variations in ship's speed. 

The problem is modelled as a coupled masses/springs problem leading to 
simultaneous ordinary differential equations and Solution via harmonic 
trial Solutions. (Ref. OU Course MST 204.) 

Opening and closing of a swing door Modelled as damped/rotational 
system with a restoring force. 

Analysis of the Solution for different damping and spring constants 
leading to discussion of the practical importance of critical damping. 

Computer disc drives Typical data for the seek time for a Computer disc 
drive are 

minimum seek time 
maximum seek time 
average seek time 

Students often query why the average seek time is not the mean of 25 ms 
and 60 ms. 

Modelling of this problem leads to a probabilistic problem. (Ref. A. E. 
Hart, On the mean—a study in modelling, Teaching Math, and its App., 
Vol. 1, No. 2, 1982.) 

Oar arrangements in rowing Presentation of some unconventional (but 
IOC approved) oar arrangements which an elementary mechanical analysis 
reveals have some theoretical advantages over more conventional rigs. 
(Ref. M. S. Thompson, The Mathematics of Sport, Ellis Horwood (1984).) 

Tumble drier design In a tumble drier, the clothes spend part of the time 
travelling on the wall of the drier and part of the time falling back through 
the air towards the bottom. 

What angular velocity should a tumble drier have in order to dry the 
clothes as quickly as possible? 

How does your result compare with the angular velocity of commercial 
tumble driers? 

CAL packages are used to help students develop a feel for the strengths 
and weaknesses of the different numerical methods included in their 
mathematics syllabus while Software libraries such as NAG give access to 
robust Software for obtaining the Solutions to numerically posed case 
studies. 

The mix described has been demonstrably successful as evidenced by the 
students' motivation and written reports. Further development is 
dependent upon the allocation of extra timetabled hours and additional 
staff assistance to permit a change to a student-driven modelling approach. 
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Modelling of this problem involves motion in a vertical circle and the 
determination of extreme values. (Source: OU Summer School, 1984.) 

Wheel balancing Small capacity motorcycles are fitted with fairly narrow 
wheels and tyres. In order to balance such wheels it is adequate to attach a 
small weight to the lightest side of the wheel. This is called static balancing. 

Some idea of the need for wheel balancing can be gained by considering a 
machine, travelling at 60 mph, for which the rolling radius of the wheel is 
11" and the weight required to bring the wheel into balance is 20 g (an 
appalling mix of units although they are the units used in the wheel and tyre 
trades!). 

The current ränge of superbikes has wheels and tyres which are up to 5" 
wide. Explain why static balancing of such wheels is inadequate and 
consequently has led to the technique of dynamic balancing. 

By taking appropriate measurements on a superbike of your choice, 
estimate the force acting on each fork leg if the balance weight is situated 
slightly off the centre-line of the wheel. What would be a reasonable value 
of this offset? What effects would these have on the wheel and hence on 
the motorcycle? This study requires the ideas of centrifugal force and 
moment of a force. (Ref. Motorcycle Sport, July, 1984.) 

Spin in ball games Many ball games involve an impact between a moving 
ball and a fixed plane surface (e.g. basketball throws against the 
backboard, snooker shots off the cushion etc.). 

Elementary analysis of such impacts is usually based upon a purely 
translational motion of the ball, and the principles of conservation of 
momentum and energy. 

This is inadequate, since the ball almost certainly has a rotational motion 
in addition to its translational motion. 

How does allowance for such spin effects alter the motion of the ball 
after impact with the plane surface? 

Biomechanics of place kicking A set of numerical data representing the 
Position coordinates of the hip, knee and ankle of a rugby player's leg 
dunng the short time-intervals immediately before and after a place kick is 
presented to the class. 

The objective is to obtain estimates of the velocity and acceleration of 
the three joints. 

This study requires the use of finite difference approximations; the 
acceleration values illustrate the need for smoothing routines. (Ref. S. 
Townend. 'Getting a kick out of numerical differentiation', Teaching 
Mathematics and its Applications.) 

APPENDIX II 

CALNAPS A computer-aided learning package developed by D. 
Katsifli and D. J. Fyfe of 

School of Mathematics 
Kingston Polytechnic 
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Penrhyn Road 
Kingston Upon Thames KT1 32EE, 
UK 

NAG An extensive library of Software packages covering a very broad 
spectrum of numerical methods. Developed by 

Numerical Algorithms Group Ltd 
NAG Central Office 
Mayfield House 
256 Banbury Road, Oxford, OX2 7DE 
UK 

APPENDIX III: ENGINEERING MATHEMATICS EXAMPLES USING 
CALNAPS OR NAG 

A. Pin-jointed frames 
In the analysis of pin-jointed frames, the following system of equations was 
obtained for the displacements U,, V„ in the system 

1.125 0 0 -0 .217 - 0 . 1 2 5 ' 1 
'V i " 0 

0 0.952 -0 .217 0 0 U 2 0 

0 -0 .217 1.125 0 - 1 = - 2 . 4 0 
-0 .217 0 0 0.952 0.217 u* 0 
-0 .125 0 - 1 0.217 1.125 . 0 . 

(Source: Mechanical Engineeing Undergraduate Project.) 

Using CALNAPS, 
(i) Investigate the Solution of the system by comparing the Gaussian 

elimination methods of Solution. 
(ii) Use Jacobi and Gauss Seidel iteration to try and obtain the Solution 

(a) starting with any initial guess at the Solution, 
(b) starting with the Solution obtained by any of the methods in ( i) . 

Tutor notes: (i) illustrate the virtues of pivoting, 
(ii) enables comparisons to be made concerning 

convergence Performance. 

B. Aerodynamic forces 
In a problem involving the drag and lift of aeroplane wings the following 
System of equations results 
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The right-hand sises were obtained experimentally and are rounded to 
two decimal places. Correct to three decimal places the values are 0.951, 
0.669 and 0.521. (Source: L. Fox, NAG Newsletter 2/1983.) 

Use the CALNAPS package to compute Solutions for both sets of 
right-hand sides. Comement on your results. (Represent \, \ to the same 
accuracy as the right-hand sides.) 

Tutor notes: A practical problem to demonstrate ill condition. 

C. Crankshaft torque 
The crankshaft of a diesel engine rotates at R radians per second. The 
torque applied to the crankshaft, called the throttle torque, is of the form 
kx, where x is the displacement of the throttle position and k is a constant. 
If / is the moment of inertia of the crankshaft. the inertial torque acting 
against the throttle torque i s / (dR/dx) . A damping torque of the form cR.c 
a constant, opposes the throttle torque. 

I — + cR = kx. 
dar 

Let / = 1, c = k = 0.8 and R = 0 when x = 0. 

(i) Solve the differential equation analytically. [5 marks] 
(ii) Use the CALNAPS package to solve the differential equation 

numerically using 
(a) Euler's Method, 
( b ) Runge-Kutta order 2, 
(c) Runge-Kutta order 4, 
(d) Milne-Simpson predictor corrector. 

Compute the S o l u t i o n as far as.r = 3and take / t = 0.1 and 0.5 in each case. 
Compare your numerical results with your analytical Solution. 

[ 10 marks] 
(iii) Write a brief report summarising your results, indicating which is the 

best (or worst) numerical method in this problem, what effect the 
change in step length makes, and any other comments you feel are 
appropriate. [10 marks] 

D. Nonlinear damping 

(a) 'In the past engineers have been restricted b y being unable to analyse, 
or to optimise, the Performance of their designs due to the 
impracticability of solving realistic mathematical models.' 

Discuss this S t a t e m e n t brtefly and explain how the use of libraries of 
numerical Software such as NAG free designers from some of these 
restrictions. 

( b ) The equation below is known as Rayleigh's equation and occurs 
frequently in the dynamic analysis of mechanical S y s t e m s 

x + ax + bx* + cx = 0; a. b,c constants. 
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A typical set of initial conditions might be x = 0, x = 0.5 at t = 0. 
Using the NAG document provided (a copy of routine D 0 2 B B F ) 
outline how a Computer Solution to this equation may be achieved for 
O s t « 1.0. (Give your answer in outline employing pseudo-code.) 
(Source: Liverpool Polytechnic Examination Question.) 

E. Cantilever deflections 
The deflection y measured at various distances x from one end of a 
cantilever is given by 

2x 0.00 0.2 0.4 0.6 0.8 1.0 
y 0.0000 0.0347 0.1173 0.2160 0.2987 0.3333 

Estimate the value of the deflection when x = 0.5. 

(a) using the data values for 0.2 =s x « 0.8, 
(b) using all the data. 

(i) By any available means, find details.of a NAG routine which will 
solve this problem to an appropriate accuracy. [5 marks] 

(ii) Write and run a FORTRAN program, using your chosen NAG 
routine, to solve the problem. [10 marks] 

(iii) Write a brief report, summarising your results, indicating which is the 
best (or worst) numerical method in this problem, what effect the 
change in step length makes, and any other comments you feel are 
appropriate. [10 marks] 

Tutor notes: (i) A straightforward interpolation problem. 
(ii) (a) and (b) above demonstrate the effect of including 

additional data. 

F. Cam design 1 
The velocity v mm/s of a point on an eccentric cam at a certain instant is 
given by 

x . 
v = - - In x, 

3 

where x is the displacement (mm). 
For what value of x is the velocity zero? Give your result correct to four 

significant figures. 

(i) By any available means, find details of a NAG routine suitable for the 
Solution of this type of problem. [5 marks] 

(ii) Write and run a FORTRAN program, using your chosen NAG 
routine, to solve the above problem. [ 10 marks] 

(iii) Write a brief report explaining how you arrived at your choice of 
NAG routine, what the routine needs to use it, a print out of your 
program and the final results. [5 marks] 
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Tutor notes: (i) A straightforward iterative Solution of f{x) = 0. 
(ii) There are, in fact, two Solutions; experience shows that 

many students overlook the second. 

G. Cam design 2 
The non-dimensionalised displacement output of a cam y (y«[0,l]) can be 
represented as a polynomial in .r, the non-dimensional input angle 
(x«[0,l]) , as 

y = £ AX, N integer > 0. 
n'O 

(i) Obtain a polynomial representation which satisfies the conditions 

y(0) = 0 y ( l ) = 1 
y '(0) = 0 and y ' ( l ) = 0 
y"(0) = 0 y" ( l ) = 0 

(ii) For what value of x, other than x = 0 and 1, is the Output 
acceleration equal to zero? 

(iii) Occasionally the designer may impose additional conditions to those 
in ( i ) , in order to force the cam to produce certain effects. 

For example he may insist that in addition to the conditions in (i) 

y'(0.4) = 0. 
Obtain the polynomial representation of this new cam. 

For what value of x is the jerk zero? 

Tutor notes: Part (i) reduces to Solution of simultaneous linear algebraic 
equations. 
Part (iii), determination of zero jerk (y " ) , requires iterative 
Solution of /(.r) = 0. 

REFERENCES 
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The Use of Micros in 
Evaluating and Displaying The 
Characteristics of Models used 
in Control Theory 

R. V. Aldridge 
University of East Anglia, UK 

SUMMARY 

In classical control theory the bulk of System design is performed in the 
5-plane via Laplace transformation. In general, techniques such as Bode 
plots and Nichol Charts require tedious arithmetic, and the root locus 
method involves the approximate Solution of a polynomial equation. To 
reduce the tedious aspects of these design methods and hence encourage 
their proper use, a suite of programs has been deve loped to run on a BBC 
microcomputer. This produces graphical output directly on a high 
resolution colour monitor, and a hard copy on a printer. 

Of particular interest is the technique used to evaluate the Root Locus. 
The method Starts by taking the known Solutions to be the poles and zeros 
of the transfer function at the extremes of the parameter ränge. The 
intermediate values are then determined by an interpolative Solution of the 
characteristic equation. 

1. INTRODUCTION 

An area of applicable mathematics that has seen rapid growth recently is 
control theory. One of the major reasons for this has been the drive 
towards automation and the growth of robotics in the commercial world. 

The first stage in any control theory study is to set down the objectives of 
the controlled process. It is then necessary to acquire/generate a model 
that describes the process to be controlled with sufficient accuracy to meet 
the specifications set out above. The next stage is to set down a Controller 
strategy. Theoretically, there may be many strategies capable of achieving 
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o 
N 
inputs 

Controlled M 
Outputs 

System 

o • o 

Fig. 1. Multi-input multi-output System. 

the desired ends. For obvious reasons the strategy that is normally adopted 
in industry is the one 'least cost'. 

The most common strategy that is adopted in practice is negat ive 
feedback. In essence this is because some 'Output' measurements can be 
used to control the 'quality' of future Outputs. A typical general multi- input 
multi-output system is shown in Fig. 1. The model of such a System is 
normally described by a set of coupled integro-differential (di f ference) 
nonlinear equations. The design of the Controller for such a System is 
therefore a very complex process and it is not surprising that it is very rare 
for an analytic Solution to be found. The engineer has to resort to judic ious 
approximations and numerical techniques to obtain workable Solutions. 

In order that the engineer builds up a good working knowledge his 
training Starts with the simplest of possible Systems, that is Single 
input-single Output linear deterministic Systems. The l inearity 
approximation is not too limiting because, as is well known, any 'stable' 
system which is perturbed from its equilibrium point can be m o d e l l e d 
linearly provided the departures from equilibrium are not t o o big. 
However, even after these approximations have been made the derivat ions 
of analytic Solutions is often tedious and therefore prone to the possibil ity 
of error by the young engineer. The purpose of this chapter is to describe 
the use of microcomputers in aiding the engineer in the first stages of his 
development. Before going into the description of the techniques 
developed it is necessary to outline the sort of problems that arise. 

2. SINGLE INPUT-SINGLE OUTPUT SYSTEMS 

In general this system can be modelled by a linear differential equat ion 
with constant coefficients 

wnerey is the Output and F(t) some 'driving' term such as an impulse, step, 
ramp etc. The engineering problem is to determine the appropriate values 
of {a,} so that the system meets its specification in terms of a given F(t) and 
initial conditions. Solving (1) is a Standard problem in mathematics. The 
Solution consists of a complementary Solution to the homogeneous 

F(t) ( 1 ) 
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equation, i.e. F(t) = 0 plus a particular integral. The determination of the 
particular integral can be quite cumbersome for non-standard forms of 
F(t). One technique that considerably reduces the labour is the Laplace 
transform method. This method is summarised below 

^ [ / ( ' ) ] = F ( 5 ) = r / ( 0 e " d r (2a) 
J o 

/(') = ir-.\ F(s)e"ds for t > 0 (2b) 

where F(s) is said to be the Laplace transform of /(/)• The great benefit of 
this method is that (1) is converted to an algebraic equation in s. It is to be 
noted that in general s is complex. The reason why this method works is 
that it makes use of the fact that the natural Solutions of (1) are exponential 
in character. The inverse transformation, i.e. back to t is complicated 
because in general a contour Integration is required. However, in practice. 
enough Standard forms have been tabulated to allow the engineer to look 
up the Solution for most situations. Details of how to use the Laplace 
method can be found in any Standard engineering mathematics text (e.g. 
Kreyszig, 1979). 

If F(t) can be expressed in terms of 

then (1) can be transformed to 

Y(s) = G(s) F(s) (3) 
m m 

where G(s) = (2.bksk)/(Zaksi) is the System transfer function. 
The quantity m has to be less than n to ensure physical reality. In the 
derivation of (3) it has been assumed that all the initial conditions are zero. 
On Substitution of (3) into (2b) it can be seen that y(r) strongly depends on 
places where 

t ' S = 0 W 
This is a polynomial equation in.s. These critical Solutions are referred to as 
the 'poles' of G(s). Equation (4) is in fact the Standard auxiliary equation 
of formal differential equation theory. Physically the Solutions of (4) are 
the natural modes of the problem. In practical testing another feature of 
G(s) ought to be introduced. This is where G(s) vanishes. This occurs when 

m 

I * .s* = 0 (5) 

These are referred to as the 'zeros' of G(s). 
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3. FEEDBACK SYSTEMS 

The simplest possible feedback system is shown, after transformation in 
Fig. 2. This is referred to as unity feedback. It can be shown that all 
feedback Systems however complicated can, after manipulation, be 

o -
Input 

System 
under > ( 

; * control 
G(s) Output 

Fig. 2. Single input Single Output unity negative feedback System. 

reduced to this form if X(s) is no longer the actua! input to the system but 
some pre-processed form of it. In this case the effective G(s) of the System 
can easily be shown to be 

G(s) 
(6) 1 + G(s) 

It is obvious that the poles of Gc„ are given by 

1 + G(s) = 0 (7) 

and the zeros of Geu(s) are still those of G(s). In the simplest Controllers 
G(s) is made up of two parts, as shown in Fig. 3, the plant' under control 
and the device used to control it. Normally G^s) is fixed, i.e. cannot be 

Series System 
Controller under 

control 
Gp(s) 

- o 

1 < 1 
Fig. 3. A simple serics Controller in a unity negative feedback System. 

altered in any way but G c(s) is at the disposal of the designer. The task 
therefore is to try to determine a Gc(s) that makes Ge(r(.s') meet or meet as 
closely as possible the required design objectives. In classical control 
engineering Gc(s) is normally of the form 

K f l Is - Z,f 
-±!i (8a) 

f l 



and 
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n - Z<Y> 
Gp(s) = e - r / - ^ (8b) 

i-B 

where K is called the gain of the Controller, s, is the appropriate pole or 
zero of order t, and T the time delay of the plant. 

4. TEST PROCEDURES 

The specifications of a real control problem are normally covered in 
terms of the steady State and time dependent properties. The time 
dependent behaviour is usually specified in terms of the response to certain 
inputs, for example impulse, step and sinusoidal Signals. The model of the 
plant is usually constructed from measurements made on the System using 
the above inputs. This latter process is often referred to as plant 
identification. Once the plant has been identified the Controller must be 
constructed and tested. If this is done in hardware this can often be an 
expensive and sometimes a dangerous exercise—it is possible for a designer 
to choose a Controller that produces unstable behaviour. This is 
particularly the case when the plant has inherent time delays. It is better 
therefore for the designer to test his ideas out on paper before building the 
test rig. To this end several techniques have been developed to test the 
designer's conjectures. These are: 

(i) The Nyquist plot. 
(ii) The Bode plot. 

(iii) The Nichol plot. 
(iv) The root locus method. 

To ease presentation it will be assumed for the rest of this chapter that only 
linear continuous time Systems are being studied. The techniques (i) to (iii) 
are all related to test Signals that are sinusoidal. The methods will only be 
outlined here. The details can be found in any Standard introductory text 
on control theory (Jacobs, 1974; Richards, 1979; Kuo, 1982). 

(i) The Nyquist plot. This is a plot of the real and imaginary parts of the 
G c ( j )G p (s) | as a function of w. The shape of this plot gives an idea 
of the nature of the System and its likely behaviour in real time. Using 
very general ideas of System stability Nyquist found it was possible to 
come up with a simple test of System stability. In essence it depends on 
whether the effective contour on varying w from — x to + x encloses 
the point G(jw) = - 1 or not. If it does then the System is unstable. It 
is also possible to generate two measures of System behaviour. These 
are the gain and phase margins. These are illustrated in Fig. 4. 

(ii) Bode plot. One of the problems associated with the Nyquist plot is 
that the frequency dependence is implicit. The Bode plot consists of a 
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Fig. 4. The Nyquist plot: Curve A is for a stable second Order System, B a stable 
third order System and C for a system with deiay and a pole at the origin. C is 
unstable. For curve B. OK is a measure of the gain margin and the angle IOP is the 

phase margin. 

plot of 20 log| 0(amp) against log10f. It is possible to set up a stability 
condition on this plot and to identify the gain and phase margins. 

(iii) Nicholplot. Once simple stability has been tested with the above plots 
it is often necessary to determine the closed loop Performance from 
the open loop behaviour. This is the purpose of the Nichol chart for 
unity feedback Systems. The chart consists of closed loop amplitude 
and phase contours marked off against axis consisting of 20 log, 0 

(open loop amplitude) and open loop phase. The closed loop 
Performance is then picked off by looking at the intersections of the 
open loop trajectory with these contours. 

(iv) Root locus. As was mentioned in the earlier sections the real time 
behaviour can be predicted from a knowledge of the poles of a System. 
For a unity negative feedback system (4), (7), (8a) and (8b) give 

for the poles of the closed loop. 

= 0 

(9) 
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It is not difficult to see that the Solutions are a function of the parameter 
K. The set of trajectories for fixed p,, Z, but varying K is called the root 
locus. From this diagram it is possible to determine the ränge of K for 
stable behaviour and what is more choose the value of K that gives the 
closest behaviour of the controlled System to the required objective. If 
these values are not satisfactory the Controller poles and zeros can be 
altered to give better behaviour. 

5. MICROCOMPUTERS IN CONTROL 

The above process of identification and Controller design in the past have 
depended heavily on one or more of the above techniques. One of the main 
Problems with these methods, especially the root locus technique, was that 
until the advent of Computers they were only very approximate and quite 
tedious to construct and because of this only relatively simple examples 
were included in an engineer's training. However, now with the advent of 
microcomputers with reasonable interactive graphics facilities at low cost 
these methods can be introduced in a much more accurate and 
sophisticated form. Because of these features and the speed at which the 
microcomputers work the Student engineers can become acquainted with 
the behaviour of much more realistic Systems before he has finished his 
undergraduate career. As these methods can be generalised to digital 
Systems the techniques of Computer control can also be brought into his 
armoury. 

The speed of the microcomputer enables the engineer to examine 
several design variations for his Controller before resorting to the hardware 
prototype. It enables the root locus method to become a quantitative 
design tool. 

6. THE 'CONTROL AIDS' PACKAGE 

The rest of the chapter will concentrate on a particular suite of programs 
mounted on a BBC model B microcomputer using a C6502 second 
processor. The latter is not necessary for the suite but was used to speed up 
the calculations. All the graphical Output was produced in the high 
resolution four colour mode 1. Screen dump facilities were available to an 
EPSON MX80 printer. 

The original aim of the package was to produce Software that supported 
the second year course in control theory given to electronic Systems 
engineers. The general idea was that the Student supplied the information 
concerning the System in terms of a model in the Laplace domain in the 
form of the position and nature of the poles and zeros and any associated 
time delays. The Software was then constructed so that graphical Output 
could be produced for any of the above plots plus the ramp inputs. Actually 
as the package was developed it was realised that not only could any plots 
be demonstrated but that proper interactive design could take place. The 
suite structure is shown in Figure 5. The algorithms for constructing the 
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Intro 

Data 
entry 

Frequency 
response 

Nyquist Bode 
M/N 

contours 

Fig. 5. The CONTROL AIDS program suite. 

Nyquist, Bode and Nichol plots is fairly straightforward. Essentially they 
consist of substituting in different frequency values via the relationship 
s = jw and then working out the various plotting values for the chosen plot 
Examples of Nyquist and Bode plots are shown in Figs 6 and 7. 

The root locus plot is more interesting. In principle (9) is a very difficult 
problem to solve because it is a transcendental equation. However, an 
examination of (9) qutckly shows that when k —* 0 the Solution must be the 
poles of the open loop and that when k —» « the Solutions must either be 
given by e ~'J = 0 or the zeros. It also can be seen that as k is varied from 
these extremes that the number of branches leaving a singularity is equal to 
the order of the singularity. Once this has been realised it is straightforward 
to see how the rest of the root locus can be constructed. The method is 
based on the fact that (9) can be rewritten in terms of the magnitude and 
phase of each complex vector. The Solution of (9) then becomes a 
condition on the magnitude and phase of the Solution values. 

There are many ways this can be solved numerically. The two that have 
been tried with equal success are Newton Raphson and a simple 'rotating' 
vector approach. Typical output is illustrated in Figs 8 and 9. 



2| -Ii 0| 2| 3, 4, 5, 6, 
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Fig. 7. The Bode plots for a System with singularities at: poles (-8.0); ( - 100. 300) 
and (- 100, -3001 .ind zeros {1.0) and (-600. 0). 
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Fig. 8. The root locus for a System with a double pole at the origin, a zero at ( - 1 , 
0) as a function of a simple position at A: (a) A i s ( -3 ,0) ; (b) (-7.5, 0); (c) ( -8 , 0) 

and (d) ( -10, 0). 



Fig. 9. The root locus Variation for a second order System with i»o poles at ( - 2 , 2) 
and ( - 2 - 2 ) and a zero at ( - 3 , 0) with time delav. The t ime delays are: (a) 0; 

(b) 0.05; (c) 0.1; (d ) 0.3; (e) 0.5 and (0 1-
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The suite also has the facility for working out the real t ime response for 
both open and closed loops of Systems for the Standard test inputs. The 
pulse and step response are illustrated for a second order system in Fig. 10. 

The use of microcomputers in the teaching of control theory to eng ineers 
has greatly enhanced their appreciation of the power of the basic tools of 
the trade and enabled them to use them in an intelligent manner. 

Deplacement Pufse widih 
is 2 secs 

1 \ 
t 1 \ 

/ 
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••l 

0 secs .3 Time 
delay ~:~' Pufse response 

(a) 

Ofspiacemenl 

A 

1 1 

0 secs 
delay Step response 

<t>) 
Fig. 10. The pulse response for a second order system with poles at ( - 1 , 2) and 
( - 1 , - 2 ) and the step response for a system with poles at ( - 1,10) and ( - 1, -10) . 
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SUMMARY 

The teaching of Newtonian mechanics is limited to a relatively few Scottish 
schools and the consequence is that many undergraduates meet mechanics 
for the first time as a mathematical discipline when they arrive at 
university. Few of the students are confident at the Start with the new 
subject and so any fresh ideas to aid motivation are welcome. I have found 
that the microcomputer is an ideal teaching aid for Newtonian mechanics. 
Over the past two years I have developed suites of Software to emphasise 
and expand on the material already presented in a more conventional 
way. The programs fall into three categories: Simulation, 'games' and 
teaching. The students find that simulations of real physical problems are 
most useful in helping their understanding of the underlying principles. 
Some of the concepts of mechanics can be illustrated within a simple 
'game'. Other topics have to be covered by a straightforward teaching 
approach but even in such programs the Computer has a unique role to 
play. Mechanics has been an area of traditional difficulty for Scottish 
students of mathematics but I have found that their interest and ability to 
cope with the problems of the subject have been enhanced by the use of the 
Computer. In this chapter 1 describe some of the features of the Software 
and some of the reasons for producing it. 

1. INTRODUCTION 

Newtonian mechanics is the mathematical model proposed by Newton to 
study the motion, and the causes of motion, of rigid particles. It is a subject 
that has traditionally caused difficulties to students of Mathematics. The 
principles of mechanics can be taught in an introduetory course which 
considers the basic problems of motion for a Single rigid particle. Even 
then Scottish students find the mathematical discipline of mechanics a hard 
one with which to cope. For, in many Scottish schools, mechanics is a 
subject encountered only in Physics and when students meet it for the first 
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time as a mathematical subject they are frightened by it and find it difficult. 
Any means to combat or reduce this fear and encourage the s tudents to 
become independent learners are to be we lcomed. 

I have taught a course of Newtonian mechanics to first year 
undergraduates at the Heriot-Watt University in Edinburgh for ten years 
now. Some two years ago I started to introduce some simple Computer 

programs into the course to consolidate and enhance the more 
conventional approach to lectures. This Software was also des igned to 
allow the students to study the subject at their own pace. 1 have written 
Software which falls into three main categories as follows: Simulation 
Software, 'games' programs and teaching packages. These three different 
Software strategies provide three distinct responses to the problem of 
teaching Newtonian mechanics. In this chapter the Software design of the 
programs in each category is discussed. 

In section 2 some of the simulations are described and the Student 
comment is analysed. Plato says in his book The Republic that 'No 
compulsory learning stays in the soul. In teaching children train them by a 
kind of game and you will see the natural bent of each'. This old phi losophy 
is one which is accepted by a number of authors including among others 
O'Shea and Seif (1983). Jt is also acknowJedged by no less a body than the 
Computer Board of the UK and in their report in December 1983 they 
point out the role of a 'game' in the learning process. In section 3 some of 
the details are explained of the Software games which illustrate the 
principles of mechanics. 

Section 4 looks at what I consider to be straightforward teaching 
packages. There are some subjects that do not lend themselves to a more 
exciting approach but I am convinced that there is still a place for such 
programs to back up the conventional lecture material. In all three types of 
Software the Computer has a unique role to play. 

The final section seeks to draw the threads together by emphasis ing the 
main aims of this approach. This work is intended to provide an alternative 
form of learning experience, to achieve a deeper understanding and 
revision of mechanics and to encourage the independent learner. The 
Software enables the Student to work on his or her own in a more 
stimulating and self-checking way and it seeks to promote the conf idence 
of the user in handling the principles of mechanics. 

2. SIMULATION SOFTWARE 

The Computer has the power to provide a graphic description of a s imple 
experiment in a subject like mechanics where such experiments would be 
difficult or expensive to set up. This allows the Student to 'see' what the 
mathematical equations are predicting. Moreover, it gives the Student the 
chance to try out different inputs in the form of initial condit ions to 
discover how this affects the outcome of the particular experiment . 

One of the Simulation programs involves a simple pulley problem. Two 
particles of masses M and rn are on either side of a fixed pulley and are 
attached to each other by a light inextensible string which passes over the 
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smooth pulley. The system is released from rest and the larger particle 
descends towards an inelastic plane which it strikes and comes immediately 
to rest. The smaller mass continues upwards under gravity and it, too, stops 
before falling back to jerk the larger mass off the plane. The jerking 
motion indicates an impulsive force and both particles then move together 
again. This problem has three distinct phases with each phase governed by 
a different set of equations. There is conservation of energy and constant 
accelerated mot ion in two of the phases and energy loss but m o m e n t u m 
conservation in the third phase. So, although this problem is not very 
excit ing in itself the principles of mechanics are well represented within it. 
The Simulation enables the Student to see these different stages and to look 
at them Over and over again if necessary. Once the program has been set up 
it will repeat its message to the Student again and again and unlike the 
patience of the human teacher this artificial tutor continues to explain the 
distinct parts of the mot ion as long as the student requests it. So the 
Computer has two advantages over the human teacher: its patience to 
repeat the arguments and the visual display it offers. In addition, the 
program can be constructed to give the students the opportunity to tnput 
their o w n values for M and m and this, too, is instructive and valuable in 
the learning process. 

There are other situations that lend themselves to simulations and 
enable students to improve on their understanding of the underlying 
principles of mechanics. For example , in circular motion the problem in 
which a particle is initially disturbed from the highest point on the smooth 
outer surface of a sphere can be s imulated. The prediction of where the 
particle loses contact with the sphere can be graphically illustrated. This 
problem is ideal for graphic Simulation and a program can be written to 
describe the subseque'nt motion of the particle after it has left the sphere. 

Motion in a resisting medium and the speed of a ring attached to an 
elastic string in which the ring is constrained to move on a vertical wire are 
further Simulation possibilities. In each of these situations the user is able 
to input s ome initial conditions and see how that influences the outcome. 
Moreover, in such examples the Computer can be set up to provide some 
dynamic programming which aids the student ' s Solution of a specific 
problem. It is the ability of the Computer to bring the subject of mechanics 
to life that appeals to the Student. All of them agree that it is the Visual 
display that is the most important feature of these programs. 1 have 
adopted the v iew in designing the Software that each program should be 
comple te in itself and not require a separate pnnted explanation. The 
Instructions for use should be clear and appear on the screen as the 
program progresses so that it is obvious what to do next. A questionnaire 
g iven out at the end of the course confirms that the students do find the 
programs easy to use. . 

3. SOME SIMPLE GAMES' PROGRAMS 

I was not aware of Plato's assertion when I started to produce some 
s imple games to illustrate different aspects of mechanics. But it is clear that 
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by gripping the students' attention with a simple game it intrigues them 
until they have found out how it works. By this time there is some 
mechanics in the 'soul' and later in the year it may even appear in an 
examination Script! 

As a subject mechanics is ideal for the construction of games programs 
and most of the examples in this section are taken from the book by 
Burghes & Downs (1975). For example, in designing a two-stage rocket an 
optimal final speed is achieved by solving a quadratic equation with the 
ratio of the mass of stage 2 to the sum of the masses of stages 1 and 2 as 
the unknown. This can be set up as a game in which the Student has to bring 
the rocket from Mars to Earth and this can only be done if the ratio is 
optimal in the sense described. A graphical display in this problem and its 
interactive possibilities encourage the students to tackle a problem they 
might otherwise avoid. 

There are other situations that can be used to illuminate the principles of 
mechanics and the next three examples are taken from the article by 
Beevers (to appear). Orbital motion is rieh in interesting examples. The 
principles of angular momentum and energy conservation form the basis 
of the equations governing orbital motion. These principles can be well 
illustrated within a simple game. Take the problem of a satellite S on a 
circular orbit above the surface of a planet P. By reducing the speed of 5 as 
it circles P the path of 5 becomes elliptic taking S closer to P. If the correct 
choice is made and the dosest approach is equal to the radius of the planet 
then a safe landing is assured. Such a program has much to say not only on 
the geometry of the ellipse but also on the principles of Newtonian 
mechanics. 

The motion of a ballistic missile in modern warfare provides another 
possible 'game'. For, the ränge of such a missile is a funetion of the angle of 
projection called the heading angle. So, to direct the missile on its optimal 
trajectory the Student must differentiate an expression for the ränge in 
terms of this heading angle. This game has scope for drama and is topically 
called GREENAM (Greenham is too long to be recognised as a program 
name on the BBC micro). 

The problem faced by a fireman trying to direct water through a broken 
window at a height H above him into a burning building forms the basis 
of another game. The fireman must stand as far from the foot of the blazing 
inferno since the heat is so intense and the wall may collapse. The object of 
the game is to find the angle of projection which maximises the horizontal 
ränge. The motion of projectiles in general is füll of examples which with a 
little ingenuity can be turned into simple games. 

In all these cases the Computer enhances the problems by enabling the 
Parameters in the problem to be varied by a randomly generated sequence. 
In each game it is only when the mathematics is properly understood that 
the Student is able to 'win' the game every time. If the Student does not 
understand a particular game then there are further programs to explain 
the mathematics of the games. As before it is important to produce Software 
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that the Student finds easy to handle so that they are confident to try out 
the material. 

4. TEACHING PACKAGES 

The third category of Software is contained in a straightforward teaching 
package in which a particular topic is explained in a rnanner reminiscent 
of a lecture. However, such material on the Computer has a number of 
distinct advantages. For example, it can be covered at the student's own 
pace with the program progression under the control of the user. Funher, 
worked examples can be laid out and the main points in a method 
highlighted by means of the Computer facilities of sound or colour. This 
teaching technique leaves an imprint in the mind of the Student at the 
important Steps through a method. It is within the subjects like differential 
equations or vector algebra where methods are relatively straightforward 
that this type of material is most useful. It also has a place, though, in 
underlining the main lines of development through a question on inverse 
Square law orbital motion. Humour, too, can be built into each program to 
emphasise the important points. 

There is, again, the Computer feature of being able to generate a random 
number. This allows each teaching package to conclude with some 
questions to the Student which are of a type but different in detail. This 
helps to preserve the freshness of each package when exactly the same 
question does not appear until the program has been used a good number 
of times. Finding particular integrals in a second order ODE with constant 
coefficients is an ideal example of the type of subject that can be best 
handled by means of a teaching package. 

5. CONCLUDING REMARKS 

The Computer is an ideal teaching aid. It will never replace the human 
teacher but it does provide an excellent back-up to convenüonal lectures 
and tutorials particularly in courses of mathematical modelling. So, the 
micro is having a growing influence in a subject like Newtonian mechanics 
where graphic display plays such an important role in a proper 
understanding of the material. 

The Software strategy in a particular case depends on the nature of the 
topic to be explained. Simulations, games and teaching packages all have 
their parts to play. With sound and colour facilities the Computer can 
illuminate the main steps in a method. Through games and simulations 
most subjects can be brought to life and the micro now becomes an 
essential part of the teacher's tool-kit. 

Finally, the computer's ability for great variety is a feature that ensures 
the freshness of each package in which the same problem recurs 
infrequently. The programs enhance the teaching of mechanics in a way 
that encourages the independent learner. The features of self-checking and 
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interactive response provide an aid that is hard to equal. In all these ways, 
then. the programs provide an alternative means of learning and he lp to 
deepen the students' understanding of mechanics. All the programs 
described in this chapter will be appearing in the text by Beevers (in 
preparation) though details of the Software can be obtained directly from 
the author on request. 
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SUMMARY 

The academic year 1984-85 saw the introduction of a course in Computer 
applications in our mechanical B.Eng course. This course is of novel 
conception in that it involves engineering and mathematics lecturers 
teaching the course both in parallel and tandem. 

Areas of work covered by the course include microprocessors and 
microcomputers, use of library subroutines such as NAG, CAD, Numerical 
Analysis and the modelling packages PAFEC and ACSL. The lectures on 
numerical analysis are run in tandem while all the others are run in small 
groups in parallel to minimise the hardware load on our DEC10 and 
PRIME Computers. 

This chapter outlines the rationale behind the modelling part of the 
course with PACEF and ACSL and illustrates the achievements of 
students and how the programs are tied together to compare their relative 
merits. Since the major role of the course is to discuss applications several 
pertinent examples are given. Assessment of the students is also discussed. 

1. INTRODUCTION 

All CNAA engineering degrees are undergoing radical transformation in 
the light of the Finniston report (1980) and the pressure of new 
technology. The old BSc formal is being replaced by the new B.Eng 
schemes. These contain a far greater proportion of applications than 
before. This should not just be seen as 'holt on' extras but as a radical 
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transformation of the whole approach to engineering education. The 
B.Eng schemes, as HMI (1985) maintain, are to be truly Computer 
integrated engineering schemes with CAE permeating the whole course in 
every subject. Our own approach to this procedure is to insert into the first 
year of the course the necessary introduction to Computer programming 
and then, in the second year, as the major plank of the Integration process 
to include a subject entitled 'Computer Applications of Engineering'. 
This is not, as its title might suggest, the only area where the Student is 
intended to encounter CAE. He is expected to meet it also in the relevant 
skills which he will apply to other subjects. It was, however, considered to 
be more economical to centralise the instruction of various techniques 
and introduce subject expertise in one course rather than the other way 
around. Thus five areas of work were grouped together in this course 
(Fig. 1) namely Computer-aided Draughting (CAD) using the MEDUSA 
System, a microprocessor applications module, use of NAG subroutines, 
Solution of Stress and Heat transfer problems using the PAFEC Finite 
Element package and the Solution of time-dependent problems using 
ACSL which is a continuous Simulation package. The work described in 
this chapter is concerned with the last two elements, that is the modelling 
part of the course. 

Most engineering courses spend much time on experimental modelling 
or iconic Simulation. Many courses used to spend time covering analogue 
Simulation. We have replaced the analogue approach completely by digital 
Simulation. 

To quote Rosko (1964): 

This course is concerned with the mathematical Simulation in which the 
Engineer utilises a mathematical model (an abstract system) to represent 
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a physical System. Through this expedient he is able to obtain and 
evaluate information concerning the system's responses to various 
excitations or Stimuli and to predict its behaviour under a given set of 
condittons. Mathematical Simulation has as its objective, as does iconic 
Simulation, the economic representation of complex physical Systems, so 
that they may be studied easily and conveniently. Simulation today is 
often a required step in current sophisticated research and development 
programmes for it is usually the only way in which engineers may analyse 
different versions of a complex physical System at a fraction of the 
system's aggregate cost. 

2. OBJECTIVES 

The primary object ive of this course is to enable students to become aware 
of the various techniques of Computer usage in engineering and to be able 
to use them well enough to solve medium difficult problems in their final 
year. For the proposed final year of the B.Eng course with which we are 
involved this design exercise could probably surface in the student 's 
individual project and almost certainly in his group design project which is 
to be one of the more salient e lements of his final year. 

Subsidiary objects of the course are to enable students to utilise the 
packages for laboratory and design work in their second year. 

Abilities to be tested 
B. S. Bloom (1964) lists the abilities required by the Student. 

(1) Knowledge—ability to recall facts and practical techniques 
(2) Comprehension—ability to translate data from one form to another, in 

our case to convert the physical problem into a Computer model . 
(3) Application—the ability to apply knowiedge . experience and skill to 

new s ituations, in our case to use modelling techniques on a ränge of 
problems. 
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(4) Analysis—the ability to break down the elements of presented 
material, recognise their relations and Organisation. 

(5) Synthesis—the ability to put the parts together to form a whole. 
(6) Evaluation— the ability to make a judgement as to the value of the 

information in terms of either internal or external criteria. 

3. FACILITIES 

The Polytechnic Computer Services run at present a DEC10 mainframe 
Computer with 130 connected terminals plus a graphical facility for 
PAFEC output only. They also have a PR1ME mainframe for driving the 
MEDUSA system. The core restraints implicit in the DEC10 mean that 
the füll power of both PAFEC and ACSL cannot be used. The Polytechnic 
will, however, be receiving 2 IBM 4381 Computers, 2 VAX Computers 
and one Data General Computer. It is at present planned to run both 
PAFEC and ACSL on the IBM set up by December 1985. This should 
enable the füll power of both packages to be utilised on line. 

4. TEACHING METHOD 

Because of the great differences in the type of work being covered the 
approach in the individual areas is different but the course is split into two 
parts—lectures and Workshops. The weekly lectures are given to the 
whole class while the Workshops operate in groups of 8 students with five 
sessions for each group for each area. This was done for two reasons. The 
first was to limit the call on Computer resources. The second was to enable 
efficient communication to take place while demonstrating the packages. 
The duration of the Workshop is two and a half hours each week for each 
group. (see Fig. 2). 

In the lectures basic topics of numerical analysis are covered plus an 
introduction to the techniques of finite differences, finite elements and 
boundary elements. For the last two techniques the application is limited to 
Potential problems. This is because of the relative simplicity of the mthod 
in this area and also the large class of physical problems, drawn from all 
branches of engineering, which reduce themselves mathematically to the 
Solution of the potential problem with simple boundary values. 

In the Workshops both ACSL and PAFEC are taught as 'black-box' 
routines. Graded problems are tackled by each Student thus introducing 
bim logically to the various segments of the package he will need to 
understand to be able to use them economically in his second and, more 
importantly, his third year on the course. At the same time the Student is 
encouraged to analyse both the input—is it sensible? i.e. is the problem he 
wishes to solve couched in the appropriate form—and the Output. The 
latter is stressed as it is a common habit for most students to produce a 
mass of Output data which is not examined critically. Phrased succinctly 
the Student is encouraged to be confident using the packages while at the 
same time being forced to realise that the methods are approximate and 
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only work as well as the approximations adhere to the reality of the 
problem. 

4.1. Computing point of view 
We choose at this point to consider PAFEC and ACSL separately. 

First Domain. Familiarity with the package syntax. We use a simple 
example for which we have an answer from other methods. 

PAFEC 
Simple plate with a hole under tension (Fig. 3). 

Choice of elements and nodes to allow easy mesh refinement and choice 
of graphical Output extension to bending problems and those of thermal 
stresses (Fig. 4). 

Point and pressure loads. 
Use of 3D elements for the problem of a solid sphere (Fig. 5). 
Use of more complex Pafblock specification for dement generation plus 

use of restraints module to allow use of symmetry. 

ACSL 
Simple pendulum. 

How to vary the integration. Step size to produce stability of Solution, 
Output facilities, graphs etc., ease of inserting non-linear terms (Fig. 6). 

Aerodynamic oscillation problem. 
Non-linear impact and divergence, with State event function extension 

into other fields by use of control System Simulation. 

Second Domain. 

PAFEC 
Taking a design problem and choosing a suitable set of nodes/elements for 
stress evaluation with a time limit and to analyse the resultant Output. 
Emphasis is placed on using an efficient method of Solution (Fig. 7). 

ACSL 
Obtain an Optimum Solution. Students are given an engine Vibration 
problem and asked to predict the worst engine speed and design a Vibration 
absorber to eliminate the problem. No time limit set (Fig. 8). 

4.2 Engineering point of view 
The basic problem of modelling for mechanical engineers is in 
understanding the limits of the assumptions behind the process and 
evaluating the Solutions generated by the PAFEC. and ACSL packages. 
The advent of the use of digital computer-based packages like the ones we 
are describing has wrought a radical departure from the older methods of 
problem analysis. lnstead of having to analyse small packets of data the 
user is now almost swamped with Output. We therefore place great 
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emphasis on graphical Output and histograms as a metbod of identifytng 
crucial areas and combinations of loads, speeds, etc. Previous engineering 
courses put the emphasis on the most difficult aspect of design. i.e. devising 
a method for producing Performance output. The arrival of packages on 
the educational scene is to put the emphasis where it most matters—using 
the data to make design decisions. 

4.3 Evaluation of Performance 
Although the course is labelled as being continuously assessed it is not 
totally assessed in this manner, neither is it really a set of objective tests. 
Finniston calls for the accentuation of making ' r ea l ' design decisions—the 
student's goal is to satisfy course requirements that will enable him/her to 
proceed to the final year of the honours course. In our view too much 
formal assessment will lead him away from the understanding of what 
engineering ought to be about and into avenues whose sole outcome is arid 
mark-accretion. 

We really want them to be able to run the packages to obtatn Solutions to 
Problems. While we would like them to understand all the Output and the 
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engineering assumptions on which it is based we are not sure this is possible 
within the time constraints placed upon this segment of their second year. 
Sections 1, 2 and 3 can be achieved. Sections 4 and 5 have been partly 
achieved at the time of writing and 6 has only been achieved by a small 
number of students. 

In the PAFEC package we have only touched upon a small fragment of 
what the package is capable of. Fundamental to all aspects of this tool, 
however, is the ability to select ab iniiio a node/mesh arrangement that can 
be refined easily about areas which we intuitively know to be critical. 

With ACSL the use of the package is different for solving control 
problems and regulär differential equations. 

To allow for this difference between the PAFEC and ACSL packages 
only one formal exercise was set for the PAFEC package while five ACSL 
problems have been set with increasing order of complexity. The final 
ACSL problem is a real design exercise and has therefore been given more 
weight (40%). 

5. PROBLEMS WITH RUNNING THE COURSE 

Generally we found that the overall demand for Computer access has grown 
far beyond what the DEC10 can realistically handle. Packages demand 
large amounts of core and sometimes have to be run 'on-line' and not in 
batch mode. The relative small size of the DEC10 has been a constant source 
of frustration to both students running the packages and to staff 
demonstrating them. Hopefully with the Coming on stream of the two IBM 
Computers this bottleneck should be considerably eased. As to problems 
associated with each package we once again split them into two 

PAFEC 
Students had difficulty in choosing correct mesh generation. A usua) fault, 
upon mesh refinement is to generate elements which are too thin or have 
too small or too large corner angles causing the program to fail. Core 
restrictions mean that only approximately 130 3D elements can be 
generated. 

Shear stress Output for 3D elements not available. Also the application 
of pressure loadings is very awkward and for some 3D elements impossible 
at this level (level. 2) of PAFEC. Hopefully we shall soon reeeive level.5 
version of PAFEC. 

ACSL 
Despite being warned students chose an integration step size which is too 
large (surprisingly seldom too small) causing numerical instability. Some 
students put in physically unrealistic data (Fig. 6b). 

The students are not able to run ACSL on line until after five o'clock 
each day. A lot of time is absorbed in running in batch mode overnight. 
As a new package on the system there have been far too many operating 
'bugs' as we all have found to our cost. 
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6. COMMENTS AND CONCLUSIONS 

The main area in which we see great problems for the future is the 
tendency of the students to become too package-reliant and with a lack of 
ability to evaluate the impücations of the Output data. When they c o m e to 
use these packages in their several design modules of the final year of their 
degree this tendency should be corrected. One way to counter this is to 
design sophisticated laboratory experiments where the only way to tackle 
the problem is via the use of the two packages and to check the Output from 
them against experimental data. 

A s was to be expected there was great Variation amongst the students in 
their ability to interface with the machine and the attendant packages. 
S o m e students soon acquired a 'feel' for how the package worked whilst 
others s e e m e d altogether lacking in understanding of the basic Operations 
of a digital Computer. Most, however, became reasonably proficient at 
putting problems on the machine. 

Finally we would like to warn other teachers attempting a similar 
exercise to make sure they have a big enough and fast enough machine 
with good graphical output for interactive access. 
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SUMMARY 

One important aspect of the practica] use of mathematics in the Solution of 
'real world' problems is the choice of a mathematical formulation which is 
appropriate to the problem. Ideally the mathematical model of the real 
problem should be sufficiently complex and detailed to yield results that 
are of importance in the Solution of the real problem (as opposed to the 
Solution of the mathematical model of the problem) yet sufficiently simple 
that results are not obscured by unnecessary detail and the mathematical 
Solution process is neither too tedious nor too expensive. 

The development of the skill of choosing a level of modelling that is 
appropriate to the problem has been characterised by the author in 
previous papers as the development of 'mathematical discretion'. It has 
been noted that inexperienced modellers usually choose too detailed a 
level of representation rather than too superficial a level. This is often 
caused by insufficient attention to developing a physical understanding of 
the problem before tackling its mathematical formulation. 

Simulation Systems can play a vital role in developing students' powers 
of mathematical discretion. They offer a simple route to studying a ränge of 
possible models, of varying degrees of complexity, for a physical problem 
and comparing the results. A well structured course involving the study, by 
Simulation, of a variety of physical and organisational problems can be very 
valuable in developing, in students, the ability to choose appropriate 
mathematical representations of problems. The fund of experience, albeit 
vicarious, which is thus built up improves students' Performance in 
subsequent modelling exercises. 

This chapter illustrates, via a study of Student response to a 
representative exercise in modelling a physical system, a typical ränge of 
mathematical formulations that may be offered and comments on their 
usefulness in solving the real problem. A dynamic Simulation system for 
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the BBC Microcomputer is briefly described. The Simulation System, 
BCSSP, will be demonstrated in conjunction with the chapter. 

1. INTRODUCTION 

The simulation/case study technique for facilitating Student learning in the 
area of the application of mathematics to the Solution of problems arising 
in the 'real world' has been developed by the author over a period of nearly 
ten years and actively used with Engineering Mathematics degree students 
at Bristol for seven. When the course was first conccived objectives for the 
course were set and are reported in Clements & Clements (1978) and in 
Clements (1978). Two of these objectives were 

(a) To give students practice in evaluating the effects of various sections 
of, and inputs to, models, and making appropriate simplifications and 
approximations to aid efficient Solution 

(b) To give students practice in critically examining the various possible 
approaches to, and models of, a System, and choosing an optimal or 
near-optimal method of analysis within the constraints of the System. 

It is noticeable that both of these objectives involve evaluative words and 
concepts. It has become increasingly apparent to the author that the 
development of sound mathematical judgement is very important to the 
mathematical modeller. One aspect of this intellectual skill was reported in 
Clements (1982). In that paper the important role played by the choice of 
notation in the formulation of mathematical models was developed. 
Infelicitous choices of notation can have an obscuring effect on the 
mathematical structure of the model and can greatly hinder the 
mathematical Solution of the model and interpretation of the mathematical 
results to the real world. 

In this chapter, however, the importance of an appropriate choice of 
level or complexity of model will be considered. In section 2 the definition 
of an appropriate level of complexity in a mathematical model is further 
discussed and in section 3 an example, drawn from teaching experience, of 
a problem which elicited from students models of varying levels of 
complexity and approximation. In section 4 a general discussion of 
dynamic System modelling programs and mathematical modelling is given 
and in section 5 the use of such Systems to help students explore different 
approaches to a mathematical modelling problem is discussed. 

2. THE CHOICE OF APPROPRIATE LEVELS OF MODELLING 

When a mathematical model of a 'real world' problem is formulated there 
is almost inevitably a choice to be made conceming which features of the 
real world are important and must be included in the model and which 
features are unimportant and may be neglected. Observation of the 
Performance of students learning modelling for the first time suggests that 
one of their major failings is that they attempt to include all possible effects 
in their initial model and consequently become submerged in excessive 
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detail. This often leads to failure to make significant progress, 
discouragement and loss of tnotivation. On the other hand one of the 
impressive aspects of the work of very experienced modellers is their 
almost instinctive grasp of the appropriate level and complexity of model 
that will reveal most about some physical or organisational problem. The 
ideal model is one that is sufficiently complex to reveal something 
significant about the real problem whilst also being sufficiently simple to be 
mathematically tractable. 

Other teachers of mathematical modelling have attempted to address 
this particular problem. For instance the mathematical modelling 
methodology adopted by the Open University for the MST204 course, 
described in Berry & O'Shea (1985), includes the compilation of a 'feature 
list' of factors that may affect the problem and its subsequent refining and 
pruning to produce a list of features whose effects will be included in the 
initial model. The pruning step is characterised by Berry and O'Shea as 
including the making of simplifying assumptions. They also suggest that 
features pruned from the model at this stage may later be reconsidered as 
the Performance of the initial model is crjtically examined and the model 
refined. Evidently Berry and O'Shea apprehend the need to inculcate in 
students an approach that intrinsically encourages them to make 
simplifying approximations at an early stage. Their students are thus 
encouraged by the methodology of modelling which they are taught to try 
out very simple initial models which they can subsequently improve. By the 
use of this methodology the modeller should iteratively approach a model 
that is of an appropriate level to answer the question posed by the 'real 
world' problem. 

Another way in which inexperienced modellers fail is in not making 
appropriate approximations in the mathematics of the model. Retaining 
the füll equations may again often lead the modeller to become submerged 
in excessive detail whilst making appropriate approximations simplifies the 
mathematics and keeps it tractable. 

Thus far the argument developed may be seen to be equating 
appropriate with simple. This is not, of course, intended to be the case, for 
an adequate and appropriate model must represent sufficient of the 
features of the real problem to a sufficient degree of accuracy to yield 
useful and realistic results. It is observable however that students of 
mathematics usually need to be encouraged to simplify their models more 
than they need encouraging to complicate them. 

There are thus two criteria for saying that the choice of a level of model 
for a problem is appropriate; that the model should adequately represent 
the important features of the real problem and those features only, and 
that appropriate mathematical simplifications and approximations should 
be made to the mathematical formulation of the model to render its 
Solution tractable and efficient. These two aspects are not, of course , 
entirely or necessarily independent. A proper understanding of the 
physical basis of the problem is necessary if the first criterion is to be met 
but it must also be realised that the physics of the real problem will often 
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also indicate the appropriate mathematical simplifications. At the same 
time the mathematical features of a developing model, when related and 
compared with the physical features of the real problem, sometimes 
indicate possible areas of misapprehension about the real problem. The 
resolution of these misapprehensions often lead to the realisation that the 
mathematical model could be altered or simplified. 

3. AN EXAMPLE 

As an Illustration of the effects of choosing different levels of 
approximation consider the following example. It is required to calculate 
the vertical acceleration of an arbitrary point {x, y) on the connecting rod 
of a reciprocating engine. The general arrangement of the problem is 
illustrated in Fig. 1. The problem arises in one of the simulation/case 
studies that the author developed in the work previously mentioned. The 
problem has been used with Student groups over seven years and has 
elicited a variety of approaches, some more successful than others. The 
coordinates may be non-dimensionalised by the substitutions 

Y = y / l , Z = z / l . r, = r/1. 

Fig. 1. General arrangement. 
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Then 

Y = I J cos 9 + Z cos d> 

and 

sin <t> = >) sin 6. 

If the crankshaft turns at a constant angular velocity, w, so that 6 = wr, a 
page or so of tedious manipulation will reveal that 

?/nw2 = - co s 6 - Z»(cos 26 + n 2sin J0)/( 1 - n 'sin 2 0) 3 ' 2 (1) 

This expression is exactly correct but somewhat unwieldy. Almost without 
exception those groups of students who have pursued this avenue have 
become bogged down in algebra before or, at best, very soon after this 
point. On the other hand reference to the physical data available for the 
problem reveals that the parameter n has a value of 0.2. This suggests that 
terms of the order of I J 2 and higher might be ignored. This may be done in 
two ways. The expression above may be mampulated and the higher order 
terms removed or, more efficiently, the decision to neglect the higher order 
terms may be made at the Start of the analysis. In the latter case the 
complexity of the analysis is greatly reduced. In either case the result is 

y / m v : = -cos 9 - Zr\ cos 29. (2) 

There have been groups of students who have achieved this result by both 
the routes mentioned. The next part of the analysis was considerably easier 
for these students and their progress, in general, was better. 

The above illustrated an example of an appropriate mathematical 
approximation, whose validity was suggested by reference to the physical 
Parameters of the real problem. which greatly reduces the complexity of 
the analysis. On the other hand there was one group who adopted a much 
simplified model in the first instance. They made the assumption that every 
point of the connecting rod has the same vertical acceleration as the big 
end, that is that 

y / m v 2 = -cos 8. (3) 

Whilst further progress through the problem was easy for these students 
their final results were poor. It can be seen, of course, that their model was 
equivalent to ignoring all terms of order n or greater. In the light of the 
fuller analysis it is not unreasonable to expect this to introduce 
considerable errors. The model adopted in this case was a perfectly good 
initial model but was too crude to yield adequately accurate final results 
and needed refining before any useful conclusions could be drawn. 

In anticipation of the next section we may use the dynamic Simulation 
package to compare the values given by equations (1), (2) and (3) when 
Z = 1 (that is at the little end bearing). This is, of course, the worst case 
and so provides an indication of the worst error that may be expected by 
adopting each approximation. Figure 2 shows a block diagram model that 
may be used to generate the function in (1). A restricted Version of this is 
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L i s t i n g o f c u r r e n t s y s t e m m o d e l 
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Fig. 3. (a) BCSSP model for connecting rod acceleration (b) BCSSP model for 
approximate model of connecting rod acceleration. 
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used to generate the function in (2). Figures 3(a) and 3(b) show listings of 
the BCSSP models and in Fig. 4 the results are compared. It is seen that, 
for this case, the form of (1) and (2) is, for all practical purposes, 
indistinguishable whilst (3) is evidently a very crude approximation to (1). 
It is no surprise then that the predictions obtained using this approximation 
were poor. 

BCSSP Graphics 
Licence number 8001 . Dr R R Clements Dept of Engin'g Maths, Univ of Bristol 

0.00 

-1.00 

Fig. 4. Approximations to vertical acceleration of little end bearing. 

4. DYNAMIC SYSTEM SIMULATION PROGRAMS 

The role of Simulation in mathematical modelling courses is well established 
(see for instance Huntley (1984) or Moscardini et al. (1984)). Modelling 
exercises and activities often result in models which lack viable analytical 
Solution techniques. In these circumstances Simulation offers a Solution 
route (and one that would be adopted in an industrial or commercial 
environment). Simulation may be implemented either by a Single purpose 
Computer program designed for the problem under study or by the use of 
one of a ränge of general purpose Simulation Systems such as GPSS, CSMP, 
CSSL, ACSL, DYNAMO, TUTSIM and many others. The major 
languages like CSMP, ACSL, CSSL, GPSS and DYNAMO are usually 
available on multi-user mainframe or mini Computers. The author's 
experience of using these languages with students is that they are far from 
simple to use in the first instance although regulär users quickly gain 
adeptness. Further, most multi-user Systems in institutions of higher 
education are heavily loaded with resulting poor response, at least during 
class hours. Students who need to simulate a fairly simple System as a part 
of a modelling exercise usually, in the author's experience, choose to write 
their own Single purpose Simulation program in a language with which they 
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are already familiär (usually Pascal, Fortran or Basic). Often they will do 
this on any microcomputer that happens to be available, particularly as an 
increasing number own their own microcomputers. The conclusion must be 
that, whilst Simulation should be a regulär tool of the mathematical 
modeller whether Student or experienced practitioner, in practice the main 
available Systems are not ideally suited to the needs of tertiary education 
courses in modelling. This conclusion is reinforced by the experience of 
Moscardini eial. (1984) who describe a Simulation package, IPSODE, 
written within their institution specifically as an introductory Simulation 
package for their students. 

Increasingly, however, Simulation languages that can be run on 
microcomputers are appearing. The TUTSIM language, for instance, is a 
block oriented continuous system Simulation language which is available 
on Apple microcomputers and on a ränge of other Computers running the 
CPM operating system. It has been used in engineering courses at Bristol 
and experience indicates that students find it particularly easy to learn and 
use. The block oriented input language has appeal, particularly to 
engineering students who are familiär with control theory ideas, in its 
Visual and diagrammatic approach to the construction and representation 
of models. The package also has particularly good facilities for the 
graphical presentation of results. In view of these advantages it was desired 
to make TUTSIM more widely available for use in undergraduate courses 
in the university. In common with many institutions of higher education, 
Bristol University has a large number of BBC Microcomputers. The 
distributors of TUTSIM were unable to provide a version of the language 
to run on the BBC machine and so a Simulation system, BCSSP, which uses 
largely the same input language and provides similar facilities to TUTSIM 
was written for the BBC Microcomputer. BCSSP has powerful facilities for 
the presentation of results in graphical form including the comparison of 
results from different simulations and can rapidly produce hard copy of 
graphical Output. This facility makes it particularly suitable for its role in 
the mathematical modelling area. Once available this package opened up 
possibilities for new teaching styles which are being exploited in the 
teaching of Systems studies, as described in Clements (1985), as well as in 
teaching mathematical modelling. 

5. DYNAMIC SYSTEM SIMULATION AND MODEL COMPLEXITY 

The essential point of this chapter is to propose that dynamic system 
Simulation can be used as a valuable tool in encouraging students of 
mathematical modelling to develop the skill of appropriate choice of model 
complexity. This is somewhat different from the uses proposed for dynamic 
system Simulation by Huntley and by Moscardini et al. (1984). That is not 
to suggest that their use is in any way invalid; on the contrary it is merely to 
point out that there is a further role for Simulation Systems. 

Once the students are familiär with the system (and the ease of gaining 
that familiarity with Systems like TUTSIM and BCSSP has been 
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6. CONCLUSION 

In the example given in section 3 it was seen that there was more than one 
way of modelling the physical System involved and that at least one 
possible model could be simplified by mathematical approximations. It was 
also suggested that one of the possible models, suitably approximated, was 
more useful and valuable for the Solution of the real problem than the 
others. The skill of distinguishing the most useful model of a real problem 
is a necessary and useful one that teachers of modelling must try to 
communicate to and develop in their students. A suitably structured 
component of a mathematic modelling course in which students explore a 
ränge of models of some problem areas will help to develop these skills. A 
readily available and easy-to-use dynamic System Simulation program is an 
invaluable aid to such exploratory work. The BCSSP System has been 
developed for this and other uses in courses at Bristol University. 
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emphasised) they have a powerful tool at their disposal for simulating and 
examining a wide ränge of mathematical approaches to given problems. 
Obviously, in the long term, it is intended that students should be able to 
choose an appropriate level of model based on their experience and 
mathematical judgement. On the way to achieving that State of affairs it is 
desirable that the teacher is able to ask students to explore a ränge of 
models of some set of real problems and then to compare the results of 
these and draw appropriate conclusions from them. Evidently such lessons 
as may be learned from exercises like this could also be taught didactically 
but, in keeping with the nature of mathematical modelling as a 
student-centred activity subject, it may be anticipated that lessons learnt 
from experience (bitter or otherwise) are much more vivid and are 
internalised by the learner at a much deeper and more lasting level—that 
certainly is the author's personal experience. 

This suggested to the author that familiarity with a dynamic S y s t e m 

Simulation program should be taught early in mathematical modelling 
courses and füll use should be made of the System during the course. Such 
use is both as a simple Simulation tool and, because it eliminates much of 
the labour of setting up simulations of Systems, as an exploration tool for 
the comparison of possible alternative approaches to modelling real 
problems. Further development of this mode of usage is currently being 
undertaken. 
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SLMMARY 

Two Computer packages used for teaching modelling to undergraduate 
students are described. They are run on an ECONET network of BBC 
microcomputers. 

The first package uses discrete event Simulation techniques to model 
Population growth. The user is presented with a wide choice of 
deterministic/stochastic models from which to select a model Solution. 
BBC graphics are then used to depict the predicted mean population 
growth and the ränge of population growth for the selected model. After 
comparison between predicted and actual known growth the user may 
select a better model. The 'modelling cycle' is continued by the Student 
until an acceptable model is found. 

The second package is used for solving models of continuous 
time-dependent Systems with known initial conditions. The models which 
can be studied are those involving ordinary differential equations and the 
Solution of simultaneous ODEs is possible. The method of specifying the 
equations using the ANALOGUE approach is described showing how 
students can vary parameters as necessary to obtain a thorough 
understanding of the model. 

The packages have been usd for students in second and third years of a 
degree course for BSc. in mathematical sciences and for final year BSc. 
engineering students. 



250 Mathematical Modelling—Methodology, Models and Micros 

l. POPULATION GROWTH MODELLING 

The package for Population Growth Modelling is written as a teaching aid, 
to be used on a BBC model 'B ' Computer and disk-drive, not as a 
comprehensive population growth Simulation package. The models which 
may be simulaled are defined by selecting one from a ränge of birth 
processes. death processes, and 'litter' size, as listed below. 

Birth processes: 

(1) Birth-rate fixed (mean time between birth events is constant, 
regardless of the size of the population). 

(2) Birth-rate proportional to population size (mean time between birth 
events is inversely proportional to the size of the population). 

(3) Synchronous births. rate fixed (all cells split simultaneously, mean 
time between birth events constant). 

(4) Synchronous births, birth-rate proportional to population size. 

Note that Option (4) above occurs as a result of programming logic and 
does not correspond to any known biological birth process. 

Death processes: 

(1) Death-rate fixed (mean time between deaths is constant). 
(2) Death-rate proportional to population size (mean time between deaths 

is inversely proportional to population size). 

'Litter' size: 

(1) Fixed (for synchronous populations this is the only Option allowed). 
(2) Random size, up to a finite maximum input by the user. 

In addition, the birth or death process can be specified, separately to be 
either random (i.e. Poisson process) or deterministic. Since the number of 
possible models is very large, and to increase the 'user-friendliness' of the 
package, the input of a particular population growth model is by a 
'conversational' mode of input whereby the user is led through a series of 
choices in a natural way. An example of the input, for a random 
birth-death process in which a 'litter', of a random size up to five offspring, 
is produced at each birth event, is given in Fig. 1. It will be noted that the 
user is presented with a page of text outlining briefly the types of model 
available, before being asked to input details of his/her model. 

The assumptions on which the Simulation of the above models is based 
are: 

(1) The descendants of one parent are independent of the descendants of 
any other parent. 

(2) Only one event (birth or death) can take place at any one time. 
(3) The random birth-death process is a Markov process with 

exponentially distributed times between events. If one process (birth 
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Fig. 1. Sample inpul for populat ion growth Simulation 

or death) is deterministic then the other is simulated as a Poisson 
process with a time-varying mean (Klein & Roberts, 1984). 

These assumptions are similar to those used in the Simulation of simple 
random birth-death processes, corresponding to cell population growth 
models where each cell splits into two or more new cells at randomly 
distributed times (Jagers, 1975; Bartlett, 1978). 

In addition to details on population growth, the user may specify a 'food 
-consumption' rate, and the amount of 'food' available. It is assumed 
that each member of the population consumes 'food' at the same rate, 
regardless of the size of the population, until all the food is consumed. 

Output from the package consists solely of graphs of maximum, 
minimum and man population sizes, computed from a series of at least four 
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simulations of the population growth model, and a graph of the average 
'food' consumption of the simulated populations, and minimum sizes of the 
series of simulated populations, at each time plotted. 

Although it would clearly be useful to Output more information, such as 
the maximum and minimum 'food' consumption, or some sample 
population growth curves, there is insufficient storage on the BBC 
Computer to hold the graph-drawing program and additional information 
for more graphs. Also, it was feit that more than four graphs displayed 
simultaneously would be too confusing for the user. 

The user may select either Cartesian coordinates, or semi-log graphical 
Output. The graphs are automatically scaled to make füll use of the dispiay 
screen. 

Examples of graphical Output are given in Figs 2 and 3. 
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39.8 

15.8 

6.3 

+ 
+ x x 
x - -

+ +

 + x * x + ^ 

2.5 

1 | 

0 6 12 18 
3 9 15 21 

Fig. 2. Semi-log graphs of population growth for a pure birth process. 

By means of a series of graded tutorial exercises, students can use this 
package to discover properties of some population growth models, and of 
similar stochastic processes, inter alia 

(a) Exponential growth/decay of simple birth-death processes, whether 
deterministic or stochastic. 

(b) The relationship between initial population size and the probability of 
extinction. 

(c) Compare the properties of deterministic models with stochastic 
models, particularly with regard to population extinction. 

(d) Discover the effect random 'litter' size has on the range/fluctuation of 
population size. 
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PLOT OF TIME: (HORIZ) US 
POPULATION SIZE (VERT.) MEAN = X 
MAXIMUM = +; MINIMUM = -
FOOD CONSUMPTION = * 

630 .90 

2 5 1 . 1 0 

100.00 

3 9 . 8 0 

15 .80 

6 .30 

2.50 

1.00! 

0 .00 10.00 20 .00 3 0 0 0 
5.00 15.00 25 .00 35 .00 

Fig. 3. Semi-log graphs of population growth for a birth-death process. 

Once a Student has become familiär with the use of the package, and/or the 
properties of birth-death processes, the package can be used in 
conjunction with other modelling tools, in a modelling e.xercise. As an 
example, consider the followtng Situation. 

A biologist has a requirement to rapidly assess the density 
(number/cubic centimetre) of live bacteria in a culture. It is possible to 
rapidly assess the density of all bacteria (alive or dead) in the culture by 
Optometrie techniques, and it is also possible to measure the amount of 
'food' consumed by chemical analysis, at any time, but it is not possible for 
the biologist, with the equipment at his/her disposal, to rapidly assess the 
density or proportion of live bacteria. 

Experimental data on the numbers of all bacteria, and the amount of 
'food' consumed. is available (Figs 4 and 5). 

A path to the 'Solution' of this modelling exercise could be: 

(1) Try, by drawing a straight line by eye. or by using linear regression 
techniques, to fit a straight line to the experimental data, plotted on 
semi-log graph paper. Observe that the data fluetuates randomly about 
the fitted straight line, so that it is unhkely that the process is 
deterministic. 

(2) Using the population growth Simulation package. obtain a graph of 
mean population growth for a simple birth process (no deaths) with 
birth-rate proportional to population size, which matches the graph 
of total bacteria numbers. 
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Fig. 4 Bacterial cell numbers (live or dead) versus time. 

(3) Discover that it is not possible to find a 'food' consumption rate which 
matches the experimental data, for the model in (2). 

(4) Show that the mean population for a birth-death process, with rates 
proportional to population size, is given by 

M(t) = N0 exp[(o -b)t] 

N0 = initial population, a = birthrate, b = dealhrate, t = time either 
by using the theory of stochastic processes, or by experimenting with 
the population growth Simulation package. Note also that semi-log 
graphs of 'food' consumed and population size, plotted against time, 
are asymptotically approximately parallel. Hence the value of (a-b) 
can be estimated from the slope of the semi-log graph of the 
experimental data of 'food' consumed. 

(5) Fit different birth-death models, subject to the constraint that the 
difference between birth and death rates is constant. It is found that a 
good fit to the experimenal data is found when a = 0.1 and b = 0.05 
(see Fig. 3 for a graph of the Simulation Output). 
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Fig. 5. Bacteria] food consumption versus time. 

Validation: The biologist took four small samples from the culture after 12 
hours, and determined the proportion of live to total cells by staining the 
samples and examining them under a microscope. The proportions of live 
cells were found to be 0.5, 0.55, 0.51, 0.42. As these values were within the 
ränge of values predicted by simulations of the model found above, in (5), 
it was concluded by the biologist that the model was satisfactory. 

Such modelling exercises, in which the Student can expenment with a 
package to discover the properties of the population. and thereby gain 
insight into the behaviour of the population, have proved valuable in 
enhancing the student's modelling expertise, and his/her appreciatton of 
modelling philosophy. 

2. CSMP 

The second package is CSMP (Continuous System Modelling Package) and 
like the first, provides a medium whereby students can study raanv aspects 
of a given model by varying the parameters; alteration of the model is also 
possible. It calls for the usual actions on the part of the user. namely: 

(1) Specify model (use Single ODE or simultaneous ODEs). 
(2) Select parameters. 
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2.1 Package use 
The package is a Simulation of an analogue Computer using a digital 
Computer. The analogue devices are available for use are: a constant, a 
divider, an exponential function, a gain, an integrator, a multiplier and a 
summer. 

Some skill has to be developed in representing the equations in block 
form using the available devices. The steps are: 

(a) Write the equation(s) with only the highest differential on LHS. 
(b) Create a suitable analogue of the equation(s). 
(c) Write the configuration—specify the linking of devices. 
(d) Write the parameter specification for the devices. 
(e) Use CSMP package. 

2.2 Illustration 
Students can be directed towards studying S-shaped curves which can 
represent the diffusion throughout society of some new invention or 
innovation. If the diffusion process involves the spread of awareness 
through 'keeping up with' one's neighbours then the rate of acquisition, 
dy/df say, might be proportional toy, wherey = number of people who have 
already acquired; so we write 

% = h (1) 

but quickly realise that there must be a limit to y so equation (1) needs 
amplifying; it is then suggested that, at time t, the rate of diffusion will 
depend on the number of potential users still left in society, i.e. (y(°°)—y), 
where y(*) is the ultimate number of users. Thus a more acceptable model 
for study is: 

% = W * ) - y ) (2) 

This model is then studied using steps (a) to (e) above as follows: 

Step (a) The equation is already in suitable form. 

The CSMP 'menu' enables the user to specify the length of time over which 
the Solution is to be illustrated and the time interval for any tabulation or 
graphical presentation. 

The user has a choice of Output: either (a) in graphical form or (b) in 
lobular form. 

The CSMP method of equation solving is easy and parameter surveys 
can be accomplished quickly as can model improvements. Mathematical 
modelling can be a stimulating activity when backed up by CSMP. 



Discrete and Continuous System Modelling with a Micro Network 257 

initial condition 

(n = Block no.) 

Fig. 6. Block diagram of integrator. 

The available analogue devices*have to be 'attached ' to the integrator to 
complete the analogue representation of the equation as shown in Fig. 7. 
At this stage the block identifiers are being used as in the CSMP 
package. 

h CON 
7 

F i g . 7. B l o c k d i a g r a m fo r the e q u a t i o n . 

Step (b) It is necessary to select an Integrator as the central block; see 
Fig. 6 for the salient features. 
The integrator has input y and Output y and requires the value of y(0) 
to be specified. 
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Block type CSMP description 

Constant 
Divider 

Exponential function 
Gain 

Integrator 
Multiplier 
Summer 

CON 
DIV 
EXP 
GAI 
INT 

MUL 
SUM 

Step (c) The blocks are then numbered individually, e.g. from 1 to 7 in 
Fig. 7, and the configuration of the model can readily be specified as 
follows: 

; TYPE ; INPUT1 ; INPUT2 
;INT ;6 (INT connected to Block 6) 
;GAI ;1 (GAI connected to Block 1) 
;CON (constant) 
;SUM ;3 ;2 (SUM connected to Blocks 3 and 2) 
;MUL ;1 ;4 (MUL connected to Blocks 1 and 4) 
;MUL ;5 ;7 (MUL connected to Blocks 5 and 7) 
;CON (constant) 

Step (d) The parameters then require specifying ; we use: 

BLOCK 

1 
2 
3 
6 

PARI ; PAR2 

0.10 (y(0) = 0.10) 
-1.00 (output = - 1 . 0 times input) 

5.00 (constant = 5.0) 
0.04 (constant = 0.04 = k) 

(note blocks 4, 5 and 6 do not have parameters requiring specification) 

Step (e) To use CSMP it will be found that the layout of step (c) and step 
(d) comply with package requirements. (A complete illustration of the 
use of CSMP is given in the Appendix.) 

2.3 The modelling process 
The parameters for the above example use y(0) = 0.10 and y ( x ) = 5.00 
which might represent, say, the number of users of pocket television sets in 
the UK (in millions). Students would be encouraged to vary the parameters 

The blocks available are: 
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and even change the model. A model change sometimes suggested is to add 
an advertising factor using 

dy 

— = ky(y(<*) - y) + a ( j , ( x ) - y ) 

where a is the parameter Controlling effect of advertising. 

2.4 General comments 
In continuous System modelling the important activities are: 
(1) Agree a model . 
(2) Formulate the relevant differential equation(s). 
(3) Solve the equations. 
Before CSMP was available on a digital Computer modelling studies were 
tedious. Activities (1) and (2) could be stimulating but (3) was time 
consuming to the extent that the total modelling process lost its attraction. 
Now, by using CSMP, students can become confident modellers. 

The package described was created by a third year Student studying for 
a BSc. in Mathematical Sciences (Hardy, 1984). 

He used as a guide his experience with a more eiaborate package, 
CSMP 10, available on the DEC 20 mainframe Computer at RG1T. The 
CSMP 10 users guide, Carnegie-Mellon University, 1971, is part of the 
DECUS library. Some guidance was also available from Boon (1983). 

A füll spectrum of models exists in the literature. Some of the books 
used by the authors are: Doebelin (1972); Jagers (1975); Bartlett (1978); 
Braun et al. (1983) and Klein & Roberts (1984). 
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APPENDIX: GUIDE TO CSMP USING THE BBC MICRO 

Using CSMP 

Stage 1. The program requests the configuration in the form: 

BLOCK ; TYPE ; INPUT 1 ; INPUT 2 

? I ; INT ; 2 etc. as appropriate 
so proceed (finish with (RETURN)) 
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Stage 2. The program the requests the PARAMETERS in the form: 

BLOCK ; PAR 1 ; PAR 2 
? 

so proceed ? 1 ; 3.0 (giving BLOCK 1 Output the initial 
value 3.0) 

etc. 
(finish with (RETURN)) 
Stage 3. The program asks the user to State for which blocks, up to a 
maximum of 5, he requires the calculated Output. 
The layout is: 

BLOCK A ; BLOCK B ; ; ; BLOCK E 

so proceed ? 1 (thus requesting the Output from BLOCK 1) 

Stage 4. The program asks the user to State the minimum and maximum 
values to be handled in graph plotting. The layout is: 

MINIMUM ; MAXIMUM 
? 

so proceed ? 0 ; 20 (if the ränge 0 to 20 is required) 

Stage 5. The program asks for time increment and duration in the form: 

TIME INCREMENTS ; DURATION 
? 

so proceed ? 0.1 ; 1.5 (this will ensure calculations are 
performed for times 0 to 1.5 in steps of 0.1) 

Stage 6. This is the Option stage which, in time, returns to the screen after 
every selection of an Option. 
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SUMMARY 

It is now well established that the formulation stage of mathematical 
model l ing represents the 'bottleneck' stage of the modelling process as a 
whole . Until s ome 'tools' are provided that will assist in unplugging this 
blockage there seems little hope in establishing a realistic methodology 
that will underpin teaching and learning strategies. Whether we are 
teaching mathematical modell ing as a vehicle for other disciplines or for its 
own sake an ultimate goal for the teacher must be to teach others 'how to 
model ' . 

The task is a daunting one . We must unravel, in some way, the thought 
processes of expert modellers. If we can Widerstand the cognitive 
structures that underly formulation, then and only then. we will be some 
way to establishing a set of heuristics that might form the basis of a theory 
of instruction and perhaps even a model of leaming. 

In its endeavour to understand some of the principal cognitive processes 
that lead to productive human thinking, educational psychology has turned 
to the field of artificial intelligence for inspiration. Many of the actions and 
internal workings of the m o d e m Computer seem to simulate human brain 
function in a remarkable way. Work into long-term and short-term 
memory storage and retrieval have been particularly productive. This new 
field of research, called cognitive science shows much promise and in fact 
gives us the opportunity, as never before, to understand human reasoning. 

The last decade has seen a shift in emphasis in the approach of those 
researchers in artificial intelligence active in this area. No longer is the 
power of the Computer seen as its main virtue but rather its ability to störe 
and manage vast amounts of data (knowledge) , i.e. the approach has 
become knowledge driven. Central to this change in approach has been the 
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development of 'expert systems'. As their name implies these Systems aim 
to act like experts and so are able to solve complex problems in varying 
domains of activity. In some areas such as medical diagnosis they have 
been particularly successful. 

It is the aim of this chapter to show how the results of expert system 
design and technology can help us in establishing those heuristics spoken of 
earlier. 

1. INTRODUCTION 
It is interesting to note that Professor Burkhardt told the Conference on 
Teaching Mathematical Modelling held at Exeter University, England, in 
the summer of 1983 that he considered 'some modelling skill and 
understanding of the processes involved are probably an important 
ingredient in teaching it successfully' (Burkhardt, 1984). At that time I 
considered that utterance a sound and valid Statement. Today it appears 
almost prophetic for mathematical modelling at least! 

The literature on the teaching of mathematical modelling abounds with 
examples and case studies. The modelling fraternity are more than Willing 
to share their experiences and in this way a collective 'folklore' of 
knowledge and practice has built up. However, this is not good enough. 
There must be some established theoretical framework to guide teachers. 
After all there is a long standing tradition in education that the 
fundamental researches in educational psychology are eventually translated 
into theories of instruction. Teachers are notoriously slow at introducing 
new ideas into their classroom or lecture theatre and it is to the credit of 
the educators present and past that mathematical modelling has so quickly 
established itself as a valid method of instruction. 

Traditional theories of learning and teaching have relied heavily on the 
science of psychology—itself a relatively young discipline and indeed 
herein perhaps lies one of the major problems in education today. The 
present lack of unanimity in theoretical approach makes the choosing (by 
the teachers) of one theory over another an ill-advised thing to do. None of 
the present theories command obvious prionty over the others, nor can a 
Single theoretical formulation, as presently developed, be considered 
adequate to cope with the diversity of situations arising in the contact with 
pupils and students. Teachers have therefore tended to remain aloof and 
impervious to the findings of their colleagues preferring to rely on that 
folklore and personal experiences previously mentioned. This is a pity, 
though understandable. The vast amount of psychological material bearing 
on the work of the teacher with its numerous gaps, inconsistencies, and the 
possibility of alternative interpretations together with the fact that even 
rigorous research findings do not in general lead directly to an unequivocal 
pedagogic prescription make the task of the conscientious teacher a 
difficult one. 

One way around this problem is to provide the teacher with a set of 
heuristics or rules of thumb that characterise a process of reasoning that 
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itself is psychological in nature. While heuristic's are not as elegant as a 
complete theory they are of immense practica! value to the teacher and the 
pupils. Humans are in fact vast store-houses of heuristic Systems for 
handling Information and therefore it would appear natural that any 
reasoning processes that are emphasised in learning and teaching situations 
should take these natural heuristics into consideration. This chapter 
describes how modern approaches to educational psychology have used the 
Computer to simulate these reasoning processes giving rise to the birth of a 
new discipline—cognitive science—that deals with the interaction between 
psychology and artificial intelligences; one learning from the other. 

Methodologies of mathematical modelling tend to concentrate on 
taxonomies that describe the process as a whole and few if any give more 
than passing reference to the formulation stage of the process. They may 
acknowledge that formulation is difficult, that it represents the 'bottleneck' 
stage of the process but little work has been done especially in this area to 
remove that blockage (Treilibs, 1979; Oke, 1984; Hickman, 1985). The 
processes that are involved in the formulation stage of mathematical 
modelling are undoubtedly complex. They are closely related to the 
processes involved in what has become known as problem solving. they 
are, however, different in nature. This chapter attempts to establish a 
methodology using the techniques of artificial intelligence and cognitive 
science to unravel these processes and thereby present a set of heuristics 
for use by the teacher and the Student in their modelling activities. 

2. PSYCHOLOGY: LEARNING AND TEACHING (Mouly, 1973) 

Psychology is the science that is perhaps most directly concerned with the 
study of behaviour. In its broadest sense, educational psychology is 
concerned with the application of the principles, techniques, and other 
resources of psychology to the Solutions of the problems confronting the 
teacher as she/he attempts to impart the process of 'education' to the pupil. 
What w e are searching for here is Information, theoretical or experimental 
that will help us understand the formulation process. In fact we require 
more. If we can establish an understanding we want to initiate a set of 
heuristics that will aid both learning and teaching. These heuristics have a 
very definite function to perform. They must assist the teacher and the 
pupil to stimulate, guide and generally facilitate the pupils' learning so as to 
achieve a set of pre-defined and meamngful goals. Because of the very 
nature of the formulation process the teacher-pupil relationship must be 
one of mutual interaction. In fact the teacher should play a more passive 
role than is perhaps the case today. 

There are two main Strands to educational psychology—theoretical and 
experimental. The attempts to provide a theoretical perspective for the 
empirical findings of modern psychology have led to the formulation of a 
number of competing theories, some of which have a substantial influence 
on modern educational attitudes. This is particularly the case in 
mathematics education. Generally, contemporary theories of learning can 
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be classified into two major Systems: associative theories and field or 
cognitive theories. It is important to emphasise that these theories are really 
'theories of behaviour, i.e. viewpoints from which the empirical data of 
psychology are structured into theoretical perspective. 

2.1 Associationism 
Associationism dates back to Aristotle's concept of the association of ideas 
based on similarity, contrast and contiguity. Early psychologists used 
introspection as their Standard approach and rapidly realised that the 
subjectiveness of this approach was not 'scientific'. As a reaction 
psychologists and in particular Watson turned to the study of overt 
behaviour, founding the school now known collectively as behaviourism. 
Today the behaviourist school manifests itself in two main streams; 
connectionism (the so-called Bond or S-R theory) and conditioning. 

The patriarch of connectionism was Edward L. Thorndike. His theory 
rests on the following conjecture: 

When a modifiable connection between a Situation and a response is 
made and is accompanied or followed by a satisfying State of affairs, that 
connection's strength is increased: when made and accompanied or 
followed by an annoying State of affairs, its strength is decreased' 
(Thomdike, 1913). 

This is the famous Law of Effect. If as Thorndike suggested, bonds were 
created by repeated pairing of Stimuli and responses, then it seemed the 
teacher's Job was merely to. provide the proper amount of practice, in the 
proper order, on each class of problems. It was the teacher's Job to identify 
the bonds that constituted the subject matter concerned, arrange a 
hierarchy of difficulty (easy first) and then arrange for the pupil to practice 
each of the kinds of bonds. His work relating to arithmetic was of particular 
significance (Thorndike, 1922), leading to the familiär practice of drill. An 
early detractor from Thorndike was William Brownell (Brownell, 1928) 
who suggested that responses should be meaningful rather than just 
automatic and if so would lead to greater understanding. We shali see that 
while Brownell did not present any substantial systematic theoretic 
justifications for meaningful instruction his influence is still significant 
today. 

Related but not identical to connectionism is the idea of conditioning. 
Classical conditioning is best represented by Pavlov's well known 
experiments which relied on the relatively mechanistic process of 
reinforcement for the formation and strengthening of associations between 
Stimulus and response. Although based on the classical conditioning 
model, Guthrie's contiguous conditioning theory (Guthrie, 1959) differs 
from classical conditioning in that it makes contiguity of a given Stimulus 
and response the only factor necessary for the two to become associated. 
According to Guthrie motivation has no place in his theory and the 
teacher's role is simply to induce the pupil in any way whatsoever, to make 
the desired response when the Stimulus is present. 
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Perhaps most complete of all and a paradigm for a model of the 
systematic and quantitative approach to the psychology of learning is 
Hall's behaviouristic, reinforcement theory (Hall, 1943). A deductive 
theory that attempted to derive the laws of learning, it contrasted with 
Guthrie's theory in that it held the view that reinforcement, in the sense of 
the reduction of the tension associated with the frustration of drive, is both 
necessary and sufficient for associations to be formed. Somewhat more 
complex is instrumental conditioning here because the operant's response 
is instrumental in accomplishing a given objective, i.e. instrumental 
conditioning is goal directed. In classical conditioning the behaviour to be 
conditioned is obtained by s ome known Stimulus (food in the case of 
Pavlov's dog), whereas in instrumental conditioning the nature of the 
Stimulus is largely irrelevant, one waits for the response to occur 
spontaneously and then reinforces it. In instrumental conditioning there is 
a feed-back mechanism that causes the response to undergo continual 
modification as a consequence of the previous response. In this way there is 
a gradual shaping of the response towards greater adequacy through 
successive approximations geared to a schedule of differential 
reinforcement. It is this latter aspect of instrumental conditioning, which 
closely simulates desired classroom learning, that prompted the success of 
Skinner's introduction of programmed learning (Skinner, 1959). 
Importantly, Skinner has no interest in physiological explanations for 
behaviour. All that is important is that a rat, pigeon or child learns a 
certain association, it is not relevant how this is accomplished. 

2.2 Field or cognitive theories 
The second major family of contemporary leaming theories originated 
around 1912 with Wertheimer's famous gestalt theory. This theory focuses 
on the global aspects of the Situation and is contrary to the mechanistic and 
atomistic orientation of associationism. The central thesis of gestalt 
psychology is that thinking and perception are dominated by an innate 
tendency to apprehend structure. This being the case, the experience of 
perceiving or thinking achieves an Organisation that is more than the sum 
of objectively identifiable individual elements or Stimuli. Theories such as 
gestalt theory are called field theories because they relate to the whole 
psychological perspective in which a person operates at any given moment. 
Learning involves structuring the cognitive field and formulating cognitive 
patterns corresponding to the relation among Stimuli in rhe environment. 
The emphasis is on Organisation, relationship, meaningfulness and 
cognitive clarity. 

This field approach is emphasised in Lewin's topological theory 
(Cartwright, 1959), which introduced the notion of life-space, i.e. the 
psychological world in which the individual lives. Learning. according to 
Lewin, is a matter of differentiating one's life-space so as to connect more 
of its subregions by defined paths by perhaps discovenng interrelationships 
among heretofore isolated aspects. Another important concept in Lewin's 
theory is that of valence, which refers to the strength of attraction and 



266 Mathematical Modelling—Methodology, Models and Micros 

repulsion among the elements of a Situation. Also known as the vector 
theory Lewin postulated that the outcome of a particular Situation is the 
result of the various forces of attraction and repulsion within the overall 
life-space experienced by the learner. Learning changes the valence value 
of the components of the life-space. In this way as clarification takes place 
so a learner modifies the valence of the various goals. By restructuring the 
life-space so the learner perceives ways that are most likely to enable 
attainment of these goals. 

Tolman's expectancy theory (Tolman, 1959) is somewhat of a halfway 
house between associationism and field theories in that it is scientifically 
objective and behaviouristic while, at the same time, emphasising the 
cognitive nature of experience. According to Tolman, learning involves the 
establishment of certain relationships between the perception of one 
Stimulus and the perception of another so that a response to a given 
Stimulus leads to the development of certain expectancies. Tolman is 
strongly against the Law of Effect and the principle of reinforcement. 
When drives are aroused, the State of tension leads to a demand for goal 
objects and activity that is guided by expectancies, which the subject 
attributes to various aspects of the immediate environment. In this way the 
learner is neither pushed nor pulled by external Stimuli but rather follows a 
path to a goal looking for signs, i.e. learning relationships. In Tolman's 
theory a correct response confirms the expectancy and therefore increases 
the likehhood of it happening again, non-confirmation has the opposite 
effect. 

In even sharper contrast to the association theories is the 
phenomenological version of field psychology (Combs & Snygg, 1959). It 
represents a systematic attempt to deal with the world of phenomena in the 
psychological reality of its essential characteristics. It views the individual 
in a State of dynamic equilibrium within the field of Operation placing 
special emphasis on the phenomenological nature of perception. 
Perception is defined relativistically; what determines behaviour is not 
objective but rather phenomenological reality. All the data of experience, 
that is the total environment is acceptable as the subject matter of inquiry 
and thus phenomenological psychology is an attempt to throw off the 
strait-jacket of behaviourism. 

2.3 Other theories 
There are many other theories that can be mentioned which are of major 
interest. We may include Gagne's hierarchical model: (Gagne, 1970) in 
which he lists eight types of learning arranged in a hierarchy ranging from 
Signal learning, that is classical conditioning to problem solving. The 
distinctive feature of Gagne's learning hierarchy lies in the possible 
transfer from one level to the next; the learning of principles, for example, 
involves the chaining of two or more concepts, while problem solving 
involves the combination of known principles into new elements bearing 
on a novel problem. We must also mention of course Piaget's cognitive 
development theory with its four stages of cognitive growth: the 
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sensorimotor stage (0-2) , the preoperational stage (2-7) , the concrete 
Operations stage (7-11) and the formal Operations stage (11 +) . Piaget's 
approach is of particular interest because of its use of protocol analysis—a 
technique that will be spoken of later. It must be noted though that the 
Piagetian model is not without its detractors particularly concerning the 
variabüity in children performing Piagetian tasks (Trabasso et al., 1978). 

2.4 Implications for teaching and the curriculum in general 
It must be recognised at the outset that very few, if any, of these theories of 
learning, were developed with the problems of the teacher and the pupil as 
their primary source of Inspiration and this is a major criticism. However, it 
must be a task of the teacher to analyse these theories to see whether they 
provide a consistent and dependable foundation for educational practice. 
This is the responsibility of the teachers and their advisers. 

A curriculum based on associationism would be characterised by 
simplicity. In its extreme form it simulates the responses of an educated 
person by identifying appropriate Stimuli and presenting the Stimuli in 
Order to match them with the desired responses either through contiguity 
or reinforcement. This is the basis for the drill programmes mentioned 
earlier, which have eventually led to many of the CAI programs of more 
recent years. At a relatively mechanistic level, connectionists would 
emphasise having the learner primed ready for a given problem with a 
variable and multiple response and rely on reinforcement to capture 
correct associations. The desired associations would themselves be 
Consolidated through properly motivated drill and hopefully generalised to 
related situations. Finally we have the extreme operant conditioning of 
Skinner that is the basis of programmed learning, so populär not so many 
years ago. It should be pointed out that for the kind of learning towards 
which operant conditioning is oriented, Skinner's approach has been 
eminently successful and can be of great practical value. 

A curriculum devised according to cognitive specifications would stress 
the structuring of the learner's perceptual and cognitive field. The 
emphasis would be on insight, meaning, Organisation and structure. 
Classroom procedures would be oriented toward the clarification, the 
discovery of interrelationships and the understanding and implications of 
structure. 

It is clear that learning hierarchies (a la Gagne) have enough 
psychological reality to justify their use in curriculum design. They can be 
useful tools to help teachers make explicit their understanding of the 
Organisation of skill learning and the way individuals differ in the extent of 
their learning. However, teachers must proceed with caution because most 
hierarchies that have been proposed have no empirical Validation and 
where Validation has occurred it has been fraught with difficulties in 
Interpretation and reliability. 

2.5 Implications for mathematics education and mathematical modelling 
The problem of making learning meaningful has led, particularly in 
mathematics to the idea that it is the structures of mathematics that are 
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important. In other words a conceptual rather than a computational 
approach has been advocated in line with the psychological teaching of J. S. 
Bruner (1966) and therefore with a theoretical basis firmly in the school of 
the field psychologists. Bruner's theory of the sequence of conceptual 
development—enactive, iconic, symbolic—and his consequential theory of 
instruction raises several important issues regarding the nature of cognitive 
representations. In the formulation of a mathematical model each of these 
modes of representation are important. Which is most important? It is not 
at all obvious that a symbolic representation is more advanced than an 
iconic representation. In developing a theory of instruction for 
mathematical modelling we must acknowledge that these fundamental 
issues need further research. However, the aim here is to indicate a way 
forward that, while acknowledging these problems, gives a pragmatic 
approach to obtaining that theory of instruction. 

Closely related to the structure-orientated approach to curriculum 
development and to the formulation stage of mathematical modelling has 
been the interest shown in problem solving and problem solving 
approaches to teaching. I think it is fair to say that the approach to the 
teaching of mathematical modelling today relates closely to how problem 
solving has been taught. Problem solving can be learnt by solving problems 
and mathematical modelling can be learnt by doing modelling! However, 
in mathematical modelling we have no clear set of heuristics compatible 
with Polya's system: Understanding the problem, devising a plan, 
carrying out the plan and looking back (Polya, 1945). 

This system facilitates the discovery of the underlying structure of a 
problem, i.e. it is an aid to insight, in the gestalt sense. The original gestalt 
psychologists emphasised the importance of problem structure, however 
they were not very specific as to the processes involved in the acquisition 
and understanding of these structures. It was left to one of Wertheimer's 
students, Karl Dunker (1945) to develop the strategies of problem solving. 
It was also Dunker who introduced the important notions of top-down and 
bottom-up processing. The former begins with an analysis of goals and 
problem reformulation while the latter begins with the analysis of the 
features of a problem; noting what is present and what can be used. 

Can similar strategies and heuristics be developed for formulation in 
mathematical modelling? Before answering it is perhaps appropriate to lay 
a distinction between problem solving and formulation in mathematical 
modelling. 

Problem solving, reasoning and thinking are terms used more or less 
synonymously to refer to a broad variety of complex mediating processes 
such as the reorganisation of cognitive structure, the elucidation of 
relationships and correlations, the synthesis of isolated experiences 
(internal and external). In contrast to learning, which entails the grasping 
of a fully structured Situation, problem solving, for example is a matter of 
reorganising experience with respect to a problem whose Solution is not 
readily available. Problem solving is characterised by its greater emphasis 
on flexibility of approach and on insight in discovering meaningful 
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relationships.' At the basis of this characterisation is the belief in an 
underlying mathematical structure. Polya and Wertheimer chose problems 
of a limited generality. In fact, most of their problems depend on 
geometry and the ability to obtain some special representation for the 
formalisation. This limited generality, however, serves as a paradigm for 
the problem solving strategy. 

The formulation of mathematical models is characterised by the lack of 
underlying structure. Real problems are by their very nature extremely 
complex and it is the task of the formulator to extract the relevant 
information by whatever means. The assumption of a pre-supposed 
conceptual framework at once makes the problem more tractable 
(Hickman, 1985). To know that Newtonian dynamics, or some aspects of 
mathematical programming is going to be used establishes the paradigm. 
Indeed this is the only practica! approach possible. When the Validation 
stage of the process reveals that the initial assumptions were inadequate 
the conceptual framework is the last thing to be changed. The use of, say, 
non-Newtonian turbulent flow models comes about not through choice but 
through necessity. It is rare indeed that a real problem is solved in a 
mathematically elegant way (Einstein's model of universal gravitation is an 
exception) and economic considerations usually dictate that any 
formulation that results in an acceptable Solution is itself acceptable. In a 
way this represents the behaviourists view; product rather than process. 
White this distinction between traditional problem solving and 
mathematical modelling is clear and necessary there are. nevertheless, 
obvious areas of overlap. Research into problem solving has told us that in 
order to develop a successful strategy and hence method of instruction. it is 
necessary to understand the processes involved in the act of formulation 
itself. If we can successfully simulate these processes then it will be a 
natural and desirable Step to establish heuristics that will form the basis of 
our strategy. 

Recently psychologists have turned to the Computer to help them in 
identifying and understanding the processes that underly productive 
thinking. 

3. COGNITIVE SCIENCE 

Cognitive science includes elements of psychology, Computer science. 
linguistics, philosophy and education, but it is more than the intersection of 
these disciplines (Bobrow & Collins, 1975). This was how Allan Collins 
defined a new scientific discipline in 1975. Cognitive science deals with the 
problem of building an intelligent machine that will simulate human 
conceptual mechanisms, that is cognitive processes. Because mechanistic 
approaches based on tight logical Systems are inadequate when extended to 

'Meaningful here means that the problem solver identifies problem cornponents and 
relationships that will lead to a Solution of the problem. These are known as means-end 
relationships. 
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real-world tasks so the workers in artificial intelligence have tried to 
become much more psychological. At the same time researchers in 
psychology have found it instructive to view humans as 'information 
processors' and have therefore become interested in machine models of 
real-world knowledge. Thus cognitive science was born! 

The relevance of cognitive science to formulation in mathematical 
modelling is an obvious one. We have already mentioned that the 
characteristic of the formulation stage of the modelling process is its 
complexity. The details of the dynamic heuristic processes that govern 
formulation are enormously complicated. The Computer is at least capable 
of handhng some of the details and Computer Simulation of the human 
activity can be very rewarding and stimulating. As early as 1962 Simon and 
Newell showed the validity of this approach (Simon & Newell, 1962). 
Their program called the General Problem Solver (GPS), enables a 
Computer to solve new, unfamiliar problems in ways that match in a 
reasonable manner the problem solving behaviour of human beings. 

It is not important at this stage to discuss the actual success in problem 
solving of GPS, what is important is what the model revealed. First a goal 
must be clearly defined and represented. Second, the present State or 
knowledge of the individual must also be represented. Third there must 
exist a control mechanism that decides whether or not the goal has been 
achieved. The control teils us where we are now and if that is not the goal 
then a discrepancy exists. The discrepancy is eliminated or at least reduced 
by making some sort of Operation which represents the problem solving 
resources we have at our disposal. The rules or conditions of the problem 
and the objects or elements of the problems must also be represented. 
Finally there must exist a mechanism of evaluation. 

Also characteristic of the approach is the identification of sub-goals. 
Simon and Newell illustrate these ideas through a flow chart (Fig. 1) of a 
problem solving process. The flowchart is held to be representative of the 
general problem solving format. You have a goal, you are not achieving it; 
you set up a series of sub-goals to help you achieve it; you institute whatever 
Operations are necessary to achieve your sub-goals; you keep track of where 
you are in the overall Operation by a series of tests until the goal is finally 
achieved. 

What cognitive science is telling us is that humans process basic 
programmes whose components (goals, elements, Operations, states of 
knowledge, rules, tests), have been described previously. Each of us 
contains a vast supply of these programs and we have been developing 
them since birth. Piaget calls simple programs Schemas and more 
complicated ones Operations. Luria called them functional Systems, Miller, 
Galanter and Pitram call them plans. Tolman calls them cognitive maps, 
Bartlett schemes, Lewin life Spaces and Berne games. Whatever they are 
called it is the task here to bring together those basic programs that will be 
necessary to formulate a mathematical model. The type and nature of the 
required programs is obviously extremely complex but their number is 
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surprisingly small. Following Farnham-Diggory (1972) of Carnegie-Mellon 
basic human information processing needs the following: 

a program for scanning and holding information in the mind 
a program for solving problems 
a program for recalling information 
a program for generating and classifying information 
a program for ordering and relating information 

This is also the case in formulation as the following simple example, taken 
from the Open University Ml Ol course, shows (Mason, 1982). A boy at 
the stern of a canal bärge leaps off onto the towpath and while the bärge 
keeps moving, runs along the path until he gets to the bow, where he 
instantly picks up a vacuum flask of coffee and runs back until he gets to 
the stern. An observer notices that while the boy is running, the bärge 
moved forward a distance equal to its length. How far does the boy run 
compared with the length of the bärge? The Solution to this problem is 
interesting because the author had recorded his attempts at formulating a 
model (the protocol) of the problem as he saw it. It is of course not the only 
way to solve the problem but it sufficeslo illustrate the processes involved. 
He recognises that the problem is stated at a fairly conceptual level so a 
physical or enactive model is inappropriate. Here he is using a problem 
solving program and recalling previous information relating to established 
modelling methodology. (He is recalling a prototype to be discussed later.) 
He then draws a diagram (Fig. 2). This iconic stage is a help to short term 
memory. It is a scanning and holding program because it helps us select the 
information presented verbally or in print. 

It has been shown by George Miller (1969) that we can retain a maxim 
of only about seven pieces of information concurrently in our short-term 
memory. For example, a handful of coins cannot be 'counted' at a glance if 

Direction of bärge 

Outward lourney 
of boy 

Inward journey 
of boy 

7 
Fig. 2. 
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it numbers more than about seven coins. In Fig. 2 the author has provided 
six pieces of information relating to the problem: the direction of travel of 
the bärge, the Start, intermediate and finish positions of the boy as the 
bärge travels its own length and the outward and inward directions of the 
running boy. Again using his problem solving progTam he begins to make 
the problem more tractable by making some simplifying assumptions: 

Constant speed of bärge and boy 
Canal is straight 

The process of simplification is a process of ordering and relating because 
he is already relating those aspects of the problem that lend themselves to 
symbolic representation: speed, distance and time. The generating and 
classifying program then enables him to recode the information and thus 
preparing for retrieval from long-term memory. Hence distance = (speed) 
x (time) and the problem is almost solved, or rather formulated! 

This very simple example ülustrates the complexity of the cognitive 
processes involved in the formulation of even the most simple models. If 
we are to make the assumption that the types of programs just described do 
indeed function while a human is thinking an important question Springs 
immediately to mind. How do we call up these programs and in what 
order? This question introduces us to the idea of control. It is not known 
how the human brain controls*its own activity and so cognitive science has 
turned again to the Computer to gain insight. In a typical von Neumann 
type machine control is relatively simple to define. Although the Computer 
may have a large memory störe containing large amounts of data and a 
large collection of commands (or Steps in a program) only one step in one 
program is active at any one instant in time. When this step has been 
carried out, some other step must be selected to become active. The 
method by which this next active step is chosen is called control. In Single 
processing with direct transfer of control each step in a program is 
numbered and the program is then executed in numerical order. There are 
two common exceptions to this: (i) If a program step invoives an 
unconditional transfer command (such as Next in Basic), that program step 
itself determines which command will become active next; or. (ii) if a 
program step invoives a conditional transfer ( IF-THEN command), then 
some specified test is carried out, and which command becomes active next 
is determined by the outcome of that test. Since only one command is 
active at any one time and because the active command always chooses the 
next command we have control. The memory location where the active 
control is located is called the control register. 

A major alternative to this type of control consists of an arrangement 
where several or perhaps many control registers exist and several of them 
are active at the same time. It is thought that this System more typically 
simulates human control mechanisms and has as its basis the concept of 
simultaneous processing. The initiation of this type of control strategy is 
complex and still being researched in Computer science itself. One method 
that is much used in AI is that of pattern recogmtion. Here each program 
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has attached to it one or more pattern recognisers which continually 
inspect the activities of the ongoing information processing. Whenever a 
pattern recogniser recognises its trigger pattern, it causes its attached 
program to enter one of the unoccupied control registers and hence to 
become active. Computer simulations of human thinking have been 
extremely successful using these techniques. 

Thus far we have suggested that cognitive sc ience offers us the 
opportunity of understanding the actual processes that are involved in the 
formulation of mathematical models. The idea that human thinking can be 
simulated in this way through identifying 'cognitive programs' and 'control 
strategies' is highly provocative. However, how do we establish the content 
of these programs? For example, if we wanted to produce a flow-chart for a 
relationship or rule discovering process that was part of the ordering and 
relating program, how would we go about it? One way is to build or 
attempt to build what has become known as an expert system which would 
automatically utilise those features identified as useful by cognitive science. 

4. EXPERT SYSTEMS 

There is a lot of misunderstanding surrounding expert Systems and artificial 
intelligence (AI). Expert Systems are derived from Artificial Intelligence. 
AI appeared in its modern form about 1975; I say in its modern form 
because relatively early in its history there was a shift from a power-based 
strategy to a knowledge-based approach (Goldstein & Papert, 1977). AI 
was seen as a scientific subject rather then an engineering discipline and its 
theatre of application was the study of the principles of intelligence using 
information processing concepts as its theoretical framework and the 
Computer as its principal tool. The theoretical change in emphasis was 
brought about by the realisation that human intelligence depends upon the 
vast ränge of knowledge that we bring to bear when solving a problem. 
Thus by about 1975 a number of AI Systems had been developed that 
appeared to solve difficult practical problems in a wide variety of fields or 
domains. It was not that intelligence as such had been understood but 
rather that symbolic information processing techniques had been 
developed which were able to solve specialist problems at a level that 
seemed comparable to the Performance of human experts. These Systems 
have now been called, collectively, expert Systems. One of the reasons why 
expert Systems have had a bad press is not because the Systems did not 
work' but rather that the subject areas that AI have tackled have usually 
already been tackled by other disciplines. Hence problem solving and 
inference have been looked at in a conventional information processing 
way by decision analysts and adaptive control theorists respectively. 
However, it is the basis of approach of the AI worker that is different and 
central to this approach to Expert Systems is the representation and use of 

'One of the earliest Systems, MYC1N, has consistently out -per formed experts in extended 
clinical trials at the medical school of Stanford University. 
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The user interface concems itself with System communication, ideally it 
will incorporate some form of natural language processor which is able to 
cope with a number of how? and why? queries expressed in everyday 
language. The knowledge base is a database contaming a very large body of 
knowledge about a particular domain. Unlike 'normal' information 
processing Systems the knowledge base of an Expert System emphasises 
qualitative logical reasoning rather than quantitative calculation. Its 
Contents are not abstract Symbols like conditional probabihties or other 
numbers but will typically hold a large number of facts and rules (and 
sometimes rules alone). In expert Systems the aim is to represent meaning 
explicitly by recording these relationships in a way that reflects peoples' 
conceptualisation of the relationships and rules, while in a form that the 
Computer can exploit rather than reducing them to abstract quantities. The 
heart of the expert System is the inference engine; the point of the program 
which embodies the algorithms for eliciting information from the user, 
searching the knowledge base and generating inferences. Since real-world 
knowledge frequently invoives uncertainty the inference engine must be 
able to handle uncertainty in arriving at a Solution. In particular much work 
has been done in establishing methods of reasoning from incomplete 
knowledge (Collins et al., 1975). We will return to this latter in the specific 
context of mathematical modelling. Inextricably linked with the inference 
engine is the knowledge representation scheme. The choice of the 

knowledge. There is no one Standard definition of an ES but the following 
captures the spirit of most Systems 

LOGIC + CONTROL = ALGOR1THM 

ALGORITHM + KNOWLEDGE = EXPERT SYSTEM 

Expert Systems consist of three major components: a knowledge base, an 
inference engine and a user interface (Fig. 3). 
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representation scheme, that is the system into which the knowledge is 
encoded, for a particular domain is critical (Johnson & Keravnon, 1983). 
The scheme should accurately capture the underlying conceptual structure 
of the declarative domain knowledge. There are as many knowledge 
representation schemes as there are expert Systems. The main ones can be 
categorised as follows: 

Predicate calculus 
Associative networks 
Frames 
Production rules 

Here is not the place to examine all of these, the interested reader is 
referred to Barr, Cohen and Feigenbaum (Barr etal., 1981). The most 
commonly used representation is that of production rules. Their mode of 
Operation within expert Systems is best illustrated by formally applying the 
method to a 'body of knowledge' relevant to mathematical modelling 
which may have been elicited from an expert modeller.' 

A problem that can be modelled by the class of models known as 
time-dependent models often exhibit the features that the variables can 
be related to inputs that cause increase and Outputs that cause decrease. 
Other models are also time-dependent but some exhibit the additional 
feature that there is a delaying factor. 

If we now make the assumption that this knowledge can be organised as a 
set of laws and facts, we can analyse the knowledge as follows: 

A: time-dependent models 
B: time-dependent models with delay 
C: discrete time-dependent models (say) 
X: input feature 
Y: Output feature 
Z: time delay feature 

Laws: 

L,: any model A exhibits features X and Y 
L 2 : any model B exhibits feature Z 

L,: a specialisation of a model type inherits the features of that category 

Facts: 

F,: B is a specialisation of A 
F 2 : C is a specialisation of A 
F,: A is a model category for B and C. 

In AI terminology the laws L, and L 2 represent declarative knowledge and 
the law L 2 represents procedural knowledge. The procedural knowledge 
dictates the conceptual structure of the declarative knowledge. For 

'The process of elicitation and its importance in Ihe design of expert Systems will be discussed 
later. This particular body of knowledge is totally artificial. 
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example, according to some procedural knowledge component certain 
facts should be clustered together and manipulated as a Single entry. This 
body of knowledge can now be encoded in terms of rules. The deductive 
relationships involved are as follows: 

D , : 
model is of type A 

exhibits features X and Y 

model is of type B 
exhibits features X,Y and Z 

The knowledge is represented in rule form as the reversion of these 
deductive relationships: 

R,: if the problem exhibits feature X and 
the problem exhibits features Y, 

then we may conclude that the likely model is 
of type A. 

R 2: if the problem exhibits feature X and 
the problem exhibits feature Y and 
the problem exhibits feature Z, 

then we may conclude that the likely model is 
of type B. 

Since the first two clauses of the antecedent of rule R 2 represent the 
consequent of rule R,, R ; may be re-expressed as 

R 2: if the model is of type A and 
the problem exhibits the feature Z, 

then we may conclude that the likely model is of type B. 

The knowledge is encoded in this form precisely to infer hypotheses rather 
than to represent deductive relationships, that is if the antecedent of R, is 
satisfied (i.e. the problem exhibits the feature of input and Output 
variables) then we may infer that we can probably use a time-dependent 
model. It should be noted that since the knowledge itself embodies 
uncertainties, the conclusion will be qualified by a degree of confidence 
(itself inferred from perhaps Bayesian probabilities or the expert himself). 
Rules such as R, and R ; encode knowledge that is suitable for inference 
and in this way the System can be made to answer How? or Why? questions 
simply by displaying the rules. 

Other rules which do not constitute reversions but could also be included 
in the knowledge are: 

R 3: if the model is of type A and the problem does not exhibit 
feature Z, 

then we may conclude that the problem is not likely to be 
described by model B. 
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R4: if the model is of type A and not of type B, 
then we may conclude that the problem could be described by 

• model C. 

R 5 : ; / the model is of type A and the model is not of type C, 
then we may conclude that the problem could be described by 

model B. 

One of the defects of this system is that the taxonomy of models (facts F , , 
F 2 , and Fj) are not explicitly represented through the rules. However, 
there is an implicit representation in that 'the model is of type A' is in the 
antecedent of each rule and that model types B and C are mutually 
exclusive. We can see for example, that the rule R: is the reversion of the 
deductive relation D : , D 2 in tum represents the law L 2 and the application 
of the law L, to law L, and facts F, and F,. 

If it is difficult for production Systems to capture all the knowledge, then 
as mentioned previously, there are other representations that can be used. 
An important area of development in expert Systems is the 'object 
oriented' or frame style of representing concepts as structured collections 
of interrelated facts and rules. The formalism was first introduced formally 
by Minsky (1975) although the actual concept can be traced back to 
Bartlett (1932). A frame is a data-structure consisting of a network of 
nodes and relations used for representing a stereo-typical Situation. Minsky 
uses the example of a birthday party to illustrate the idea: 

Jane was invited to Jack's birthday party, she wondered if he would like 
a kite. She went to her room and shook her piggy bank, it made no 
sound. 

Most readers would interpret this story to mean that Jane wants money to 
buy Jack a present but there is no money in her piggy bank. Minsky and 
other researchers such as Schank (Schank & Abelson, 1977) suggest that 
this response is surprising in that the words 'present' and 'money' do not 
appear in the story, but the connection has been made none the less. They 
would explain this by saying; something early in the story, as seen, 
triggered the retrieval of the 'birthday frame' from long-term memory 
which has a slot in it for 'present' as a default assignment (something that 
may well be expected at a birthday party). The same reasoning applies to 
the piggy bank frame with the slot, 'money'. In this way, Minsky argues, 
inference take place. 

Attached to any frame is information about how to use that frame, what 
to expect to happen and what other frames might be related and under 
what conditions. The importance of the conception lies in the fact that it 
allows the co-existence of the declarative knowledge representing some 
Situation and the procedural knowledge that controls it. It does this 
because a frame contains a large body of richly interconnected information 
about a Single topic organised around typical observations and procedures 
(in the opinion of the expert!). The top levels of a frame are fixed, and 
represent things that are always true about the supposed Situation. The 
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lower levels have many terminals, called slots, that must be filled by 
specific instances of data. Each terminal can specify conditions its 
assignments must meet (in fact the assignments themselves are usually 
smaller sub-frames). The slots are initially filled with default assignments 
containing information that hold unless new information displaces them. In 
terms of cognitive processing, Minsky conjectured that frames were never 
stored in long-term memory with unassigned terminal values, usually they 
contain weakly bound default assignments (such as 'present' above). As we 
react with our environment so we call up these frames from long-term 
memory and modify the default assignments for a particular Situation, i.e. 
the frames are closely related to our notion of basic human programs or 
heuristics. The notion of frames produces an important link with the field 
theories of psychology that have previously been described. For example, 
Minsky believes that there is a similarity between Piaget's idea of concrete 
Operation and the effects of applying a transformation between frames. 

Again to illustrate the idea, although it does not do it justice, the frame 
representation of our modelling example is given in Fig. 4. 

The frame representation scheine captures the given conceptual 
structure and the taxonomy of models is represented through the 
'specialisation' and 'type' slots and the empirical associations between 
features and models through the 'features' slots. Thus all the laws and facts 
are explicitly represented. It is most important to note that these frame 
representations are not limited to Classification hierarchies but can 
represent other aspects of knowledge. Part of hierarchies can describe the 



280 Mathematical Modelling—Methodology, Models and Micros 

frames which are components of other frames and so on, as above. 
Importantly for mathematical modelling, frames can be more abstract in 
that they can be used to represent meta-knowledge, i.e. knowledge about 
knowledge. Systems with meta-knowledge can stand back and critically 
consider the different techniques available to them in solving a problem. 
The major step in applying these ideas is to regard all the concepts 
introduced so far, facts, laws, rules, decisions, control mechanisms as 
objects themselves, i.e. frames and consequently they can appear in frames 
themselves. However, Minsky has not made it clear how frame-based 
Systems can infer and it is a feature of modern approaches that frame 
oriented representations are regarded as being most suitable for 
representing facts and data-declarative parts of the knowledge. The 
procedural parts—the parts that control the processes of symbot 
manipulation (in this case the basic symbol being a frame itself)—are 
usually dealt with separately. We have already seen that a most convenient 
way of representing procedural knowledge is through a rule. Rules can be 
stored within object frames and are used when inferences about an 
objector set of objects are required. Figure 5 taken from Aikins (1983) 
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illustrates this point. In this system called Centaur the frames are called 
Prototypes because they represent typical situations which can be used as a 
basis for comparison to the actual Situation given by the data. Centaur is a 
consultation system concerned with diagnosing pulmonary disease. Its 
importance here lies not in the fact that it is a Consultant bu t that its method 
of knowledge representation separates those rules that are, for example, 
written to control the invocation of other rules, to set default values, or to 
summarise data from those rules used to infer new information. The 
control knowledge is represented within each prototype thus allowing 
context-specific control, and Separation from other knowledge in the 
system. Quite rightly Centaur Claims as one of its virtues that it represents 
its knowledge explicitly. Rule-based Systems, as we have noted, represent 
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their knowledge implicitly. The rule format represents not only procedura! 
knowledge, but also declarative knowledge and control knowledge within a 
prototype. If one is using such a System to explain expert performance'then 
there is a significant advantage in Centaur's approach in that experts can 
specify a different set of control tasks for each prototypical Situation. 

In mathematical modelling, the formulation stage of the modelling 
process often calls for the recall of prototypical situations. When I was 
modelling the rolling resistance of a pneumatic tyre on a road (Hickman, 
1985) I was immediately drawn to the classical prototype model that deals 
with Coulomb friction. This behaviour is typical of the professional 
modeller particularly where expediency calls for the use of Standard 
techniques, which is very often the case in commercia! or industnal 
environments. The actual formulation and refinement of the model can 
then take place through the slots of the chosen frame. Where necessary 
other prototypes may be called up so that the familiär 'Stagnation penod' is 
avoided or at least kept to a minimum. There is no doubt that closer 
examination of the Centaur System will be productive. It is not yet clear, 
however, that the System would be wholly adaptable to the domains of 
mathematical modelling because a decision as to the Status of the required 
System (consultative, tutorial etc.) has yet to be rnade. 

It has been mentioned before that the heart of an expert System is the 
inference engine. All Systems have an inferencing component which draws 
conclusions from the data it is presented with. The method of Operation of 
the inference engine will depend on the type of logic employed, which can 
be one or more of: 

(a) Propositional (i) Boolean 
(b) Predicts (ii) Extended boolean 

(iii) Multi-valued 
(iv) Fuzzy 
(v) Bayesian 
(vi) Probabilistic 

Where a degree of uncertainty is to be built into the System care must be 
taken as to the choice of model for a particular domain in order to avoid 
odd results. More careful elicitation techniques can sometimes avoid the 
use of such models. 

The above logic Systems are only part of the total inference engine. 
There also has to be a control mechanism or strategy which decides which 
items of data are to be gathered and used to make an inference. There are 
many such control strategies, some are listed below: 

(a) Blind search 
(i) Breadth first 

(ii) Depth first 
(b) Heuristic search 

(i) Best first 
(ii) Generate and test 
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(c) Directional search 
(i) Backward chaining 

(ii) Forward chaining 
(iii) Bidirectional chaining 

The type of search strategy chosen is dependent on the specified domain. 
For example, in mathematical modelling the system might choose from a 
list of possible prototypes by a 'best first strategy'. The data drives the 
selection using a heuristic function or some other routine that decides 
which prototype looks most likely to lead to a successful Solution. Of 
course cross-checking mechanisms are included that enable a change of 
prototype as more data is inferred or gathered. Within each prototype 
object-level inferences can be goal driven (backward chaining) or 
data-driven (forward chaining). If the control strategy fails to infer a 
Solution the system could ask for more data. 

So far, some of the features that go to make up an expert system have 
been described and their relevance to formulation in mathematical 
modelling noted. However, having decided that because of its flexibility an 
object level environment would be a suitable knowledge representation, 
one might ask the question: where does our control strategy and 
inferencing logic come from? How do we gather not only the declarative 
knowledge but also the procedural knowledge specific to formulation in 
mathematical modelling? The answer is of course from expert modellers! 

Most expert Systems are rule-based Systems. This is because it is a 
common belief among researchers that most knowledge can be captured in 
rules. This is a misconception as Systems like Centaur have shown. One 
side-effect of this misconception is that little research has been carried out 
in the area known as knowledge elicitation,' i.e. the extraction of 
knowledge from an expert. The research that has been done suggests two 
main methods both of which use the Services of the 'knowledge engineer'. 
The knowledge engineer can be thought of as the project manager acting as 
a mediator between the expert and the knowledge base. She/he need not be 
the programmer or gatherer of information but will supervise the tasks that 
are necessary for successful implementation. According to Feigenbaum 
(Feigenbaum & McCorduck, 1983) the design task is characterised by 
rapid prototyping. First the knowledge engineer gets acquainted with the 
nature and terminology of the domain by studying textbooks, manuals or 
other written material. Second the knowledge engineer interviews a 
domain expert and observes him/her solving realistic problems from the 
domain. The aim of these interviews is the selection of the appropriate 
tools for knowledge representation and inferencing and the gathering of 

'There is a subtle distinction between knowledge elicitation and knowledge acquisition. 
Knowledge elicitation denotes the methods and techniques used to extract and exphcate the 
knowledge that drives expert Performance. Knowledge elicitation is a subset of the knowledge 
acquisition stage of expert system design (the term subset is used in its proper form in that in 
certain circumstances knowledge elicitation is the same as acquisition, i.e. the subset equals 
the set). Knowledge acquisition in general has a wider scope in that sources of Information 
other than a human expert are consulted, i.e. books, records, users, etc., 
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the domain specific knowledge (laws and facts). A first prototype System is 
then brought up quickly and demonstrated to the expert. A subsequent 
incremental development of the System follows. 

A different approach to the design problem has been proposed by 
Breuker and Wielinga in a series of reports that form the basis of an Esprit 
project developed in conjunction with the knowledge-based System centre 
of the Polytechnic of the South Bank (Breuker & Wielinga, 1983). This 
ambitious project aims at establishing a methodology for knowledge based 
System design and the early reports deal with 'the acquisition of expertise'. 
The main proposal regarding knowledge elicitation is that a greater degree 
of analysis of the domain is required before the elicitation process takes 
place. They suggest five levels of knowledge analysis. 

Knowledge identification. 
This level of analysis corresponds simply to recording what one or more 
experts report on their knowledge. 
Knowledge conceplualisation. Aims at the formalisation of knowledge in 
terms of conceptual relations, primitive concepts and conceptual models. 
The knowledge of different experts and possibly different sub-domains is 
unified within one conceptual framework. 
Epistemological analysis. This analysis uncovers the structural properties of 
the conceptual knowledge, formalised in an epistemological framework. 
Logical analysis. This level of analysis applies to the formalisms in which 
the meta-level knowledge is expressed and is responsible for inferencing. 
Implementational analysis. This is an analysis of the control strategies, i.e. 
the mechanism on which the higher levels of knowledge are based. 

Breuker and Wielina's point is that traditional expert System design 
(Feigenbaum's) map from the first level to the fifth level. They suggest that 
there is an intermediate stage that will improve the authenticity of System 
design. This intermediate stage rests on the design of so-called 
'Interpretation models'. An interpretation model consists of a typology of 
basic elements, structuring relations and a representation of the inference 
structure for a class of domains. The elements of the model are canonical, 
that is, they are abstractions of the elements that constitute the knowledge 
in a specific domain. A Classification of canonical elements has been given 
by Wielinga (Wielinga & Breuker, 1984). The interpretation model 
represents a top-down approach to the analysis of verbal data. By some 
technique structured interview, thinking aloud procedures etc., data is 
gathered from the expert and matched against the interpretation model; 
the model is tested and debugged by the 'empirical data'. It is argued that 
the more elaborate and explicit the interpretation model is from the start, 
the more efficient the analysis can proceed. 

Neither of these approaches are feasible in a domain as complex as 
formulation in mathematical modelling. How can a knowledge engineer 
get acquainted with the nature and terminology of formulation? There are 
no textbooks, manuals and very few research papers (Treilibs, 1979; Oke, 
1984). The non-domain expert knowledge engineer has even less of a 
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chance of designing a satisfactory interpretation model. What is required is 
a synthesis of the two methods, that is a top-down approach (interpretation 
models) and a bottom up approach (rapid prototyping). The only way that 
this can be feasible in the domain of mathematical modelling is that an 
expert modeller plays the role of the knowledge engineer, eliciting 
knowledge from other experts. The whole exercise is made more tractable 
in that interpretation models can be constructed by the expert from his own 
knowledge having predetermined the knowledge representation. This 
predetermination will significantly simplify the recognition of knowledge 
sources 1 specific to that domain. The rapid prototyping approach and 
empirical debugging could then be used for refining the model. Once a 
finely tuned model has been obtained it can form the basis of the learning 
and teaching strategies for mathematical modelling. 

5. CONCLUSIONS 

This chapter has argued that in order to teach modelling effectively we 
must understand the processes that underly the formulation stage of the 
modelling process. This stage is well recognised by professional modellers 
and practising teachers to be the 'bottleneck' stage of the process as a 
whole. The unplugging of this blockage must be a primary step towards a 
theory of instruction for mathematical modelling. 

The argument for a theoretical description of the processes rests on the 
traditional approach of educational psychology. Here theoretical 
descriptions for observed phenomena have given rise to theoretical 
prescriptions for instruction. Thus we saw that Thorndike's connectionist 
approach led to the emphasis in the classroom (and lecture theatre!) on 
drill and practice. Simultaneously. rival field theories eventually led to the 
structure-oriented approach to curriculum design and the arrival of 
discovery methods such as problem solving. 

The behaviourist school is not interested in underlying mechanisms, 
giving great emphasis to the products rather than the processes of thinking 
activity. It is here that the cognitive school departs from the Skinnerian 
tradition. It must be acknowledged that many of the behaviourists' 
techniques (Skinner's in particular) are of great practical value (how many 
of us shut up our children with a bribe of some sort!), but the cognitivists 
have been unwilling to give up the belief that there is an underlying cause 
from which the observed behaviours do in fact flow. If this underlying 
cause, this process, can be understood then it can be taught and the 
resulting desirable behaviour will follow. 

Modern educational psychology has turned to the Computer to help in 
the understanding of some of the fundamental cognitive processes and 
together with the work resulting from the researchers in artificial 
intelligence has given rise to the new discipline of cognitive science which 
considers humans as information processors of one kind or another. The 

'A knowledge source is a piece of knowledge that derives new information from existine data 
(Clancey, 1983). s 
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Using MODISTAT—Micro 
Stats Package for Illustrating 
Mathematical Principles 

T. H. Mangles 
Plymouih Polytechmc, UK 

SUMMARY 

Modistat was developed primarily as a tool for Statistical analysis. From its 
conception several criteria were identified as heing fundamental. 

• the package should be user friendly, 
• the package should be easy to use, 
• the user prompts should be in English, 
• the user should not be left with a blank uninformative screen. 
• extensive use should be made of the colour graphics capabilities of 

microcomputers. 

Düring its development several features were seen to have applications to 
the teaching of mathematical principles: 

This chapter develops some of these applications including: 

• the Solution of linear equations and consistency 
• the Solution of equations and the remainder theorem 
• the convergence of Fourier series 
• discontinuities in functions. 

1. SOLUTION OF SIMULTANEOUS EQUATIONS 

In statistics we are often interested in predicting a variable, referred to as 
the dependent variable from one or more other variables, referred to as 
independent variables. In many cases a linear model is assumed and in one 
of its simplest forms we have 

Y = /S,.v, + ßlX2 + e 
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where Y is the dependent variable,*, a n d * 2 are independent variables, ß\ 
and ßz are unknown parameters, e is the error. 

A series of n > 2 measurements are made on Y corresponding to 
preselected values of.v, and . r : . Then using the principle of least Squares 
estimates of the unknowns /?, and ß: can be found. There are several ways 
of obtaining the so-called normal equations associated with equation (1). 
However, the following rules give a simple method without resorting to 
calculus techniques. 

Rule 1 
Write down the model without the error term and replace the parameters 
with their estimates. 

Equation (1) becomes 

Y=blXi+b2x2 (2) 

r>, is the estimate of /»,, b2 is the estimate of ß2. 

Rule 2 
For each estimate in turn multiply both sides of the equation by its 
coefficient to form a series of equations. 

Equation (2) thus generates 

coefficient of b, isx, giving.V|V = b,x,2 + b2XiX2 

coefficient of b2 is .r 2 giving x2Y = b,x,x2 + b2x2

2 

Rule 3 
Sum all equations over the n measured observations. This gives the normal 
equations 

2Zx,Y = bi'Lx,2 + b2IjciX2 

Hr2y = b,1x,x2 + i 2 2*2 2 

In these equations the unknowns are r>, and b2. Given a set of data the 
remaining quantities are all known. Thus any of the Standard techniques 
used for solving a set of simultaneous equations such as 

7 = 2x + 3y 

3 = j r + y (3) 

can now be used. 
At this stage the problem of Statistical estimation of the model is given in 

equation (1) and the numerical Solution of simultaneous equations are 
identical. 

However, by suitable modification of the model in equation (1) we can 
also solve the simultaneous equation problem given by (3) and thus use 
proprietary Software for solving such Systems. 
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Firstly in mathematics the number of equations is generally equal to the 
number of unknowns and since the LHS will equal the RHS there is no 
need for the Statistical error term. Thus the model becomes 

Y = + ß2x2 (4) 

Hence if we now let the dependent variable Y represent the LHS values of 
equation (3), independent variable xx represent the coefficients of x, 
independent variable x2 represent the coefficients of y, ßi represent the 
unknown x and ß2 represent the unknown y we have a one to one 
correspondence and a statistics package can now solve the simultaneous 
equation problem. 

Example 1 To solve 

7 = 2x + 3y 

3 = x +y 

using MODISTAT. 
The MODISTAT data file shown below is set up 

MODISTAT V1.07 
LHS ' X Y 

ROW1 7 2 3 
ROW2 3 1 1 
To display the OPTION MENÜ please press Return.? 

Save the data on disc and return to the procedure menu. Using option 14 
we obtain the following menu 

MODISTAT V1.07 

CODE OPTION FOR 
ROW COL : MULTIPLE REGRESSION 

1 - STANDARD MODEL WITH INTERCEPT 
2 - THROUGH ORIGIN 
3 - WEIGHTED ANALYSIS WITH INTERCEPT 
4 - WEIGHTED ANALYSIS THROUGH ORIGIN 

- ADD 4 TO THE ABOVE CODES TO PRODUCE 
THE ANALYSIS ON ANOTHER DATA SET 

9 - EXIT TO ANOTHER PROCEDURE 

Type the OPTION CODE then press Return.? 

Select Option 2 since our 'model' has an intercept of zero. 
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MODISTAT V1.07 

INDEPENDENT VARIABLES 

Type the NUMBER OF INDEPENDENT VARIABLES then press 
Retum.? 

In this example there are two 'independent' variables, the coefficients of 
x and the coefficients of y . These are also entered. 

MODISTAT V1.07 

DEPENDENT VARIABLE 

Type the COLUMN NAME then press Return.? 

This is the LHS of our equations stored in the column called LHS. 

MODISTAT V1.07 

; CODE : OUTPUT OPTION 

1 -
: 2 -
: 3 -

4 -
: 5 -
: 6 -
: 7 -
: 8 -

9 -
10 -

FITTED MODEL : 
ANALYSIS OF VARIANCE TABLE 
TABLE OF OBSERVED, PREDICTED AND RESIDUALS : 
SAVE RESIDUALS ON A DATA FILE ; 
DELETE AN INDEPENDENT VARIABLE ; 
RE-ENTER AN INDEPENDENT VARIABLE : 

MULTIPLE CORRELATION COEFFICIENT ; 
ANOTHER REGRESSION USING THIS DATA ; 
REGRESSION USING A NEW DATA SET : 

EXIT TO ANOTHER PROCEDURE 

Type the OPTION CODE then press Return.? 

To obtain the Solution to our equation select Option 1. 

MODISTAT V1.07 

; FITTED MODEL : 

; VARIABLE NAME ESTIMATE STANDARD ERROR 
; x 2 

Y 1 

To display the OPTION MENU please press Return.? 

To show that the Solution is correct select Option 3. 
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MODISTAT V1.07 

; NAME OBSERVED PREDICTED RESIDUAL 

: ROW1 7 7 0 
: ROW 2 3 3 0 

To display the OPTION MENU please press Return.? 

Example 2 Consistent equations 

To solve 7 = 2x + 3y 

3 = x + y 

5 = x + 3y 

The MODISTAT data files are set up as before; however, the Output now 
produced is shown below: 

MODISTAT V1.07 

FITTED MODEL 

; VARIABLE NAME ESTIMATE STANDARD ERROR 
; x 2 

Y 1 

To display the OPTION MENU please press Return.? 

MODISTAT V1.07 

; NAME OBSERVED PREDICTED RESIDUAL 

: EQ 1 7 7 
: EQ 2 3 3 
: EQ 3 5 5 

0 
0 
0 

To display the OPTION MENU please press Return.? 

Notice that the residuals are zero showing that the equations are 
consistent. 

Example 3 Inconsistency 

To solve 7 = 2x + 3y 

3 = x + y 

5 = 2x + 3y 
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MODISTAT V1.07 

FITTED MODEL 

; VARIABLE NAME ESTIMATE STANDARD ERROR ; 
; x 2.999999 4.358901 : 
: Y 7.748604E-07 3.000001 : 

To display the OPTION MENU please press Return.? 

MODISTAT V1.07 

; NAME OBSERVED PREDICTED RESIDUAL 

: EQ 1 7 6.000001 0.9999995 
: EQ 2 3 3 0 

EQ 3 3 6.000001 -1.000001 : 

To display the OPTION MENU please press Return.? 

Notice that the residuals are now non-zero showing that the equations are 
inconsistent. 

2. THE USE OF GRAPHICS TO ILLUSTRATE MATHEMATICAL 
CONCEPTS 

The eye is our most important communication Channel able to assimilate 
vast amounts of information regarding shape and form very rapidly. Since 
most modern microcomputers support good quality colour graphics this 
facility should enable us to exploit the eye to give students a better 
understanding of mathematical concepts. All the graphs associated with 
the following illustrations were obtained using MODISTAT. 

2.1 Envelopes 
For example the functiony = x sinx has as its envelopey = . randy = -x. 

This is illustrated in Fig. 1 together with the fact that the local maximum 
of x sin x do not occur at . . . 

-3ir —n n 3n 
~ ! ~ ' ~ 2 ~ ' 2 ' T " • 

The MODISTAT data files are set up as before; however , the Output n o w 
produced is shown below 
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-4 -2 0 2 4 

Fig. 1 

2.2 A second example 
Another interesting family of curves is illustrated by the following example 

y = 1 - e x p ( - x ) 

y = 1 - exp(-*'•') 

y = 1 - exp( - . r 2 ) 

These curves have several interesting properties in the ränge x > 0 

— they are bounded between y = 0 and y = 1 
— the curves are monotonic increasing 
— at * = 0 y = 0 
— the curves are continuously differentiable. 

However, they have another interesting feature as is shown in Fig. 2. 
The general family of these curves 

y = l - e x p ( - - L y 

are used extensively in the study of the reliability of Systems. Providing n 
remains fixed (1 in our example) the family of curves always intersect at 
r = n and is referred to as the characteristic life. The value of y 
corresoponding t o * = ij is a lways 0.632 = 1 - e'\ 

graph plots Ol Y = X , Y = - X , Y=X-S IN (X). against X 
Data file:— memory Date: -10 /07 /1965 
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0 5 1 1.5 

Rg. 2 

2.3 Visual Solution of equations and the remainder theorem 
Consider the problem of finding the non-zero root of 

e' - Ix - 1 = 0 

lf we divide this equation into 

y , = e' and y2 = 2x + 1 

then the Solution of the original equation will occur w h e n y ] = y2. 
The graphs are shown in Fig. 3. The equation has two roots a t * = 0 and 

x = 1.3 (approximately). 
It is of interest to note thatyi > y2 f o r * < 0 ;y i < y2 for 0 < * < 1.3 and 

y, >y2 f o r * > 1.3. 
This is of course the principle of the remainder therorem. 

2.4 Fourier series 
Fourier series are basically a method whereby certain functions can be 
represented as a series of sines and cosines. 

We will be concerned with the convergence of the series rather than their 
derivation. In particular the Fourier expansion of * 2 is given by 

•> t 2 ^ ^ , ,^ c o s r * 
x 2 = t + 4 2 ( - ! ) ' — r - - * < * < * 

The convergence of this series is shown in Fig. 4. The first graph shows 
plots o f y = x2,y = n 2 /3 and the first harmonic - 4 c o s * . 

graph plots of Y = 1 - E X P ( - X ) , V = t - E X P ( - X l . 5 ) , Y=1 - E X P ( - X . X ) , against X 
Data file:-memory Date:- 24/03/1985 
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graph plots of Y = EXP(X), Y=2«X + 1, against X 
Data file:-memory Date:- 10/07/1985 

8 i — 

- 1 0 1 2 
x 

Fig. 3 

graph plots of Y=X«X, Y=3.289863, Y= -4 .COS(X) . against X 
Data file:- memory Date:- 23,03/1985 

-2 
X 
2 
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graph plots of Y=X-X , Y=3.289863 4-COS(X). Y=COS(2.X) , against X 
Data file:-memory Date:-23/03/1985 
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- 2 0 2 

x 

(iv) 

Fig. 4 

The second graph shows plots of y = x2, y = (n 2 /3 - 4cos.v and the 
second harmonic y = cos 2x etc. 

As one can observe the convergence is very rapid apart from the 
extremes of the ränge. It is also interesting to note for successive harmonics 
how the amplitude decreases and the frequency increases. 

Further Fig. 5 shows clearly that when y = x~ is extended periodically it 
is continuous and therefore the series can be differentiated to produce the 
Fourier expansion of Zv or equivalently that of x. However. as the plot also 
shows the periodic extension of y = x is not continuous and therefore the 
term by term differentiation of the associated Fourier series is not valid. 

2.5 Discontinuities, limits and the mean vaiue theorem 
A lot of interest centres around the behaviour of functions at points of 
discontinuity. Figure 6 shows the plot of the function 
(jf3 + 4.v + b)/(x2 - 6x + 8) showing the discontinuities at x = - 4 and 
x = 2. 

Further, Fig. 7 shows the plot of the graphs 

y - sin x y =- and y = sin x/x 

graph plots of Y = X - X , Y=3.2898r53-4-COS(X)+COS(2 'X) -0 .4444445'COS(3-X) . 
against X 

Data file:— memory Date - 23/03/1985 
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X 

Flg. 6 

graph plots ot Y=X«X, Y=X: REM Extended periodically, against X 
Data file:- memory Date:- 10/07/1985 
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5 1 15 

Fig. 7 

lt shows that 

.. s in* 
hm = 1 
t - o * 

and also illustrates the results of the mean value theorem 

, s in* 2 n 
x n 2 

3. CONCLUDING REMARKS 

MODISTAT's function plotting routine allows a variety of functions to be 
investigated simply by typing in the function as a legal BASIC Statement. 
Further, by using the IF Statement step function and periodic extensions to 
functions can be plotted. 

e.g. Y = X*X . 1FX > 3.14159 THEN Y = (X - 6.28318) | 2. 

gives the periodic extension of y = r ; used in Fourier example. 
Due to MOD IST AT's ability to cope with values outside the numeric 

ränge of the Computer, functions with discontinuities can be easily 
investigated. For teaching purposes hard copies can be obtained in a 
variety of ways: 

• Photographed using a Single lens reflex camera to produce 35 mm 
transparencies. 

graph plots of Y=SIN(X), Y = 1/X, Y=SIN(X)/X, against X 
Data file:-memory Date: -10 /07 /1985 
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• Output to large ränge of dot matrix printers. 
• Output to flat bed plotters to produce quality graphics or overhead 

transparencies. 

1 hope that this chapter has produced some interesting ideas on the way in 
which Computer graphics and proprietary Software can be used to illustrate 
mathematical concepts. 
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1 . INTRODUCTION 

The past few years has seen a tremendous upsurge in the use of Computers 
in all sections of society. The development of cheap but powerful 
Computing facilities, especially the microcomputer, has brought about a 
demand for Computing knowledge in areas far removed from those 
traditionally associated with calculating machinery. Now, not only science 
and engineering make their needs known in the demand for people skilled 
in using Computers, the arts also seek experienced users of Computers to 
assist in their studies of an ever more complex world. Such needs are 
reflected in current courses covering many disciplines at both 
undergraduate and postgraduate level by the inclusion of elements of 
Computing and Computer studies. Traditionally such course developments 
have tended to assume that the students on the receiving end of a 
Computing input to their chosen course will in all cases benefit from a 
mathematical treatment of the subject and that to this end the students are 
competent mathematically. This assumed necessary predeliction for things 
mathematical is an unfair and quite untenable premise to adopt as a basis 
for the inclusion of Computer studies and Computing in courses which may 
take as their input a mixture from both the traditional streams of A level 
studies. 

First, it may be a matter of Student choice, for it is a curious reflection in 
the waters of time that mathematics, the most 'artistic' of academic 
pursuits, is viewed quite definitely as companion subject only to the 'hard' 
sciences. Ask students of the arts why they have chosen to pursue their 
particular line of study and in many cases the response will be 'well, I never 
was much good at maths. . . .' or '1 don't have a mathematical mind . . .'. 
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Secondly, and this is a reflection upon the training of teachers in the use of 
the Computer in the classroom, many children are still encouraged to treat 
the Computer as an extension of the mathematics equipment, though the 
mass media effectively often demonstrate that this is not the case. 

Taking the above points together, it is no surprise therefore when, in the 
throes of an arts based course, students, upon finding themselves face to 
face with lecture material from the departments of mathematics, Computer 
studies or Computing, are heard to question 'why?' and query its relevance 
to their chosen fields of study. 

In the softer disciplines of, for example, business, politics, sociology, 
commerce and environmental studies, it is not difficult to establish the 
relevance of a knowledge of Computers and Computing to each of these. It 
seems entirely natural that there should be a growing demand for Computer 
involvement in soft courses as course leaders realise the impact of the 
Computer revolution on their specialisms and seek to strike a balance 
between the traditional needs of the discipline and the demand to keep 
pace with developments in technique and methodology. The point is that 
though staff are sure of it students often fail to see the relevance of the 
Computing and any mathematics that they do to the needs of their subject 
areas. 

The last phrase above '. . . that they do . . .' is a key one for haste is made 
to add that the fault for the currently observed acceptance levels of 
mathematics and Computing in many courses by no means wholly lies in the 
preparatory stages of students for further and higher education. New 
Polytechnic and University courses are still mounted (or old ones revised) 
in which Computing, following the suggestions of staff members feeling 
'something in the wind', is introduced to bring the courses up to date. Until 
very recently little constructive research was carried out by either serviced 
or servicing departments to establish how, in what way and at what price 
Computers were affecting the serviced discipline. Syllabuses were lifted, 
with only minor, if any, modification from Standard introductory material 
or self-contained units of existing Computing courses. The Computing 
department may have been a subsidiary of the 'Queen and Servant' 
department herseif, yet little cross-referencing to the mathematics Service 
syllabus supplied for that very same course occurred. In many cases the 
Service mathematics syllabus could be found to be that drawn from 
Standard introductory material to courses based solely in the 
mathematics discipline. 

All of the above can add up to students taking a degree in a subject 
where though, to them, Computers and Computing clearly are playing an 
ever increasingly important part in the subject at large their feelings are 
quite strong that the Computing and mathematics elements of the course 
are irrelevant, pointless exercises in equation and number manipulation. 

To help combat this attitude requires a two-pronged approach. On the 
one hand, today ' s students must reawaken to the old-fashioned precept 
that the courses they choose are designed to be academically stimulating 
and demanding, as well as vocationally oriented. Many an erstwhile radical 
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bent upon applying the pruning knife of relevance to some tree o f 
knowledge in the forests of academe would do well to consider the CNAA 
documents concerning achievement of academic aims and objectives. The 
work students do as undergraduates should fire curiosity, fuel interest and 
feed the mind, not just sow the seeds for a harvest of pay-packets. This 
important aspect of education seems forgotten on the treadmill of 
qualification gathering in order to reduce the likelihood of unemployment. 

On the other hand, the academic preparing for Service courses should 
make the effort to determine to what extent, and in what ways, his subject 
is involved in the works which draw their recruits from the ranks of the 
serviced courses and devise his material accordingly. Nowhere is this more 
true than in mathematics, Computing and Computer studies where the 
extra-departmental Service load must surely stand on a par with that for the 
department 's own courses. And in these days in which many departments 
cast their eyes over work normally farmed out to the experts, a servicing 
department may run the risk of not being invited back because the serviced 
course leader feels that a better and more satisfying (to the Student) job 
can be done from the inside where the relevance aspects are more clearly 
seen, understood and emphasised. 

In recent years the involvement of the staff of the Mathematics and 
Computer Studies Department of Sunderland Polytechnic in discussions 
centred upon the revision of existing and the provisioning of new syllabuses 
for its courses both hörne based and serviced has caused much soul 
searching. 

The place and role of the mathematics, Computing and Computer studies 
taught has been questioned and examined in the light of the aspirations of 
the courses concerned as reflected in their vocational and academic aims 
and objectives. 

It must be said straight away that this chapter does not set out to consider 
points arising from the question of mathematics or Computing and 
Computer studies in the broader context, only those aspects which impinge 
upon modelling and Simulation. 

So far as modelling and computer-based Simulation is concerned it was 
very soon realised that no course serviced did not boast some literature 
covering those aspects of the subject wherein the Computer was being 
used as a vehicle to carry both predictive and hypothesis testing models. 
The main trouble was, of course, that links from these new sources to the 
undergraduate were not easily forgeable because of the need to develop 
considerable analytic machinery first. For example the modelling of 
growth and development for biologists requires considerable knowledge of 
set theory, computability and the Chomsky languages, and the 
environmental Systems studies of Bennet and Chorley calls for a sound 
understanding of control theory. Usually, in order to be able to study a 
model which is not trivial the Student is required to master some complex 
analytic technique which, of course, immediately opens the door to the 
problem of non-relevance and boredom sets in before enough can be 
mastered to build links to the subject area. In order to circumvent this 
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problem past efforts have been to redraft the qualitative mode l s 
encountered in terms of tally Systems and elementary Statistical analyses of 
distributions arising from tallying. But such models can lack interest and 
realism to some students. Inside 'soft' courses experiences are judged by 
driving word models of the experience through the processes of Validation, 
experimentation and comparison with their external real world 
counterparts, and though the outcome of such processes must be relative to 
the value judgements of the participants, the pleasure of involvement for 
the Student is great and under good tutoring, critical faculties are 
developed, insight occurs and learning takes place. A n y quantif ication 
aspects often reside in the aforementioned Statistical domain and act only as 
vindication of the acceptance or rejection of a hypothesis put forward in 
debate. 

In the light of all the above, it s e e m e d that some form of model l ing and 
computer-based Simulation was a possible way to answer the need to foster 
a quantitative approach in the 'softer' disciplines and both prepare the way 
for new technologies and encourage courses to face new, deve lop ing 
techniques. 

The problems to be solved were 'what sort of model l ing and what sort of 
Simulation?' 

The philosophy of modell ing and the art and technique of mode l 
construction is, at this very moment , undergoing considerable 
re-examination. It is becoming realised that the origins of a model d e p e n d 
more upon the Solution techniques available than was at first be l ieved. A 
great deal of lip senvice is paid to the art of model bui ld ing—to the need to 
establish clear goals and points of perception both with regard to the mode l 
itself and to the requirements of the model ler . But when all thts has been 
voiced it is soon forgotten in the haste to strike out , through carefully 
reasoned argument, of course, this or that embarrassing term and quickly 
get to that differential equation. From then on 'modell ing' is reduced to a 
process of obtaining the necessary tools , techniques and facilities to solve 
the equation. Clearly this approach is not desirable bearing in mind the 
purposes for which the topic is introduced into the scheme in the first 
place. Often the begmning modeller can be put off by too much techniques 
learning to Start with. Indeed, has it not been discussed at length that this 
very style of approach probably caused much of the trouble in the first 
place. 

To seek to establish any sort of mathematical relation b e t w e e n 
arbitrarily chosen variables very early on in the model l ing scheme is not 
advisable on a serviced course. Most models in the 'softer' disciplines 
constructed along these lines for undergraduate assimilation tend to be so 
trivial that they offer nothing alongside the complex issues which can arise 
and be tackled by setting up verbal models and thrashing them out in a 
debate . A s stated before any more worthwhile model demands knowledge 
of some part of the mathematical modeller's analytical armoury. 

In addition, in order to satisfy the desire to introduce the Student to 
Computers and Computing in their subject, the model ideally should lend 
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itself for Computer Solution without making it appear that the Computer is 
being used like a sledge-hammer to crack a nut. Most mathematical 
models do not need a Computer to solve them, indeed, a part of the art of 
mathematical modelling is the study of expressions to prise the secrets of 
their behaviour from the form of the expression alone. 

Whatever was decided upon the following points had to be met namely, 
that the approach 

• could set up sufficiently complex models to ensure that the contrast 
with the traditionally qualitative approach, and all that that entailed, 
of a 'soft' subject was not naked and trivial; 

• was clearly relevant to and part answered the deve loping needs of the 
subject area as expressed through the involvement of Computers and 
Computing in the field of work which looked to that subject for its 
fresh or graduate employees; 

• was capable of supporting fairly complex models whose analytic 
tractability did not depend upon having to exhaust enthusiasm by 
learning new techniques applicable solely to solving the model; 

• provided ampie Computer awareness and opportumty for beneficial 
computer-student interaction; 

• was academically stimulating, 
• supported other topic areas of the course. 

Out of a number of alternative computer-based modelling and Simulation 
methodologies an approach was found which answered most of the above 
points. This approach is founded on modelling using causal loop 
diagramming and then Simulation through difference equation 
construction in a beginner's programming language. The Option is a lso 
present for the Student to translate the model into a form acceptable to the 
D Y N A M O Compiler if this Option should be of benefit to the course. 

As is demonstrated in the following example casual loop diagramming is 
a simple, but powerful , tool applicable to all disciphnes and which 
immediately gets the students modelling in an exploring and critical 
manner . The causal loop diagram lends itself naturally to the establishing 
of difference equations. and it is soon realised by the quicker Student that 
the use of the table functions 'softens' the models sufficiently to make them 
a viable adjunct and accessory to the more traditional forms of analysis in 
their subject. The use of the Computer encompasses having to get a 
difference equation model up and runntng and v\here required, extends to 
using DYNAMO, a piece of commercially supphed Simulation Software. 

The MSc. Mathematical Modelling and Computer-Based Simulation, 
MSc. Ecology, BSc. Environmental Studies, BSc. Joint Scheme of Sciences 
Combined Studies in Science and BA Data Processing degrees at 
Sunderland Polytechnic all include, along with mathematical modelling. 
modelling and Simulation based upon causal loop analysis. 

In order to demonstrate the method a class exercise for use in 
environmental studies is described below. 
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2 . GROSS WORLD MODEL 

2 .1 Discussion 
This globe of ours is of finite size. The amount of fertile land on it is not 
infinite but has measurable extents. It is not unreasonable therefore to 
assume that there is a ceiling to the maximum amount of food which the 
fertile land of Earth can support by natural growth and replenishment at 
any one time. 

The peoples of the Earth have ever open mouths. As a result of the 
constant consumption of food the growth ceiling is never reached. At any 
point in time the total amount of food being replenished by the fertile areas 
of the globe is always less than the growth ceiling. 

Environmentalists, contemplating the ultimate fate of a world of finite 
capacittes being dwelt upon by an ever increasing number of inhabitants, 
have sought ways of assessing the consequences. Qualitative discussion 
grants that such growth cannot proceed indefinitely but only hints at the 
probable end and prevaricates about the route taken there. 

As a first attempt towards some crude quantification of the problem a 
group of environmentalists have considered the above and put forward 
three indicators of the State of the global food condition. The first indicator 
is the gap between the food ceiling and the actual amount of food growing 
at any point in time. The second indicator is the ratio of the actual food 
growing to the food ceiling. The third indicator, called the gap regeneration 
time, is the amount of time, starting from a given point in time, needed by 
the Earth to close completely the food gap existing at that given point in 
time provided nothing on Earth ate another morset of food. 

The environmentalists further declared that two irrefutable Statements 
could be made concerning the State of the global food supply in terms of 
the three factors described above. 

(i) At any point in time the amount of food being regenerated through 
natural growth is directly dependent upon the food gap. 

(ii) The gap regeneration time increases more and more quickly as the 
food ration decreases. 

Discussions with biologists and demographers gave the environmentalists 
reasons to propose that a further important factor to consider was that of 
crowding—the extent to which each member of the human race 
encroached upon the livmg space of his neighbours. It was decided that the 
effects of crowding generally would be to lower fertility and shorten the 
average life-span of humans. In short, as the Earth becomes more and 
more crowded the incidence of live births per thousand of the population 
per year would become increasingly depressed and the average life-span of 
the total population would gradually fall. 

On the other hand though, as biologists were quick to point out, there 
is nothing like a füll stomach for peace of mind and encouraging the 
satisfaction of other appetites and so when the food consumed per capita 
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is high it may be expected that the live births per thousand per year would 
be encouraged. 

Discuss the above Statement and draft a causal loop model which may be 
used to support ideas put forward concerning the future of man on a finite 
globe with finite food resources. 

As each element is committed to the model briefly consider, where 
possible, the sources of data and information about it confirming that some 
reasonable estimate of its type and magnitude is obtainable from the 
sources at your disposal without too much difficulty. 

2.2 Model construction: causal loop diagramming 
One of the reasons why causa) loop diagramming is proving populär in the 
'softer' disciplines is because the Student does not lose sight of his subject 
for a moment while constructing the model. At each step in establishing 
the model the problems to be solved are those which are common to the 
subject area and not introduced as a result of the techniques ultimately 
n e e d e d to 'solve' the model. The next step, which follows the Instructions 
of the discussion document, illustrates this point. 

Element commissioning is done through group discussion and considers, 
in the light of the problem description only, what things to include in the 
model, in what units they are to be measured and how Information about 
them is to be obtained. The italics above emphasise the major importance 
of this Statement. Construction of a model is never attempted without first 
having produced a Statement embodying either the goal, aim, designed 
function or Statement of action of the model. No matter how long, or 
troublesome, may the effort to produce such a Statement be, i t « produced 
and all eise devolves from it, or denvations of it arising from amendments 
to it carried out as feedback from various ensuing stages occurs. 

The following list of elements is typical of that eventually obtained trom 
second year Student discussions of the Gross World model. 

Appendix 1 illustrates a possible causal loop diagram based upon the 
above elements. 

Briefly, construction of the model is as follows. (For a fuller exposition 
of the technique of causal loop model building attention is drawn to the 
references at the end of this chapter.) 

Each pair of elements of the model is examined in turn to see if either 
one of the pair affects the other in some way. The question of 'affects' is 
settled by asking 'if the chosen measure of this element changes (increases 
or decreases) then does the chosen measure of that element change 
(increase or decrease) due to the influence of this element over that one' 1 ' 
If the causal link is believed to exist then this link is established in the 
model by drawing an arrowed line from the influencing to the influenced 
element and writing a positive or negative sign close to the head of the 
arrow. The type of sign signifies the direction of the influence at work: 
positive if the change in measure of the influenced element is in the 
'same' direction as the change in that ofthe influencing element and negative 
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Gross World Model-—Elements Lists 

Elements and units Information source 

• Maximum population of the Earth Research, discussion, guesswork 
People 

• Population of the Earth Departmental data 
People 

• Population ratio Population/maximum population 
Dimensionless 

• Global birth-rate Departmental data and research to 
Fraction of population/year determine trend with crowding 

• Global death-rate Departmental data and research to 
Fraction of population/year determine trend of average life-span Fraction of population/year 

with crowding 

• Global habitable space Research, discussion, guesswork 
Square units 

• Dynamic food ceiling of the Earth Departmental discussion, biologists, 
Food units ecologists 

• Current dynamic food level of the Departmental discussion, biologists, 
Earth ecologists 

Food units 

• Average normal global food needs Biologists 
Food units/person/year 

* Food gap Food ceiling-Dynamic food level 
Food units 

• Food ratio Dynamic food level/food ceiling 
Dimensionless 

• Food regeneration rate Food gap/gap regeneration time 
Fraction of food gap/year 

Food gap/gap regeneration time 

Food units/year 

if the change in measure of the influenced element is in the 'opposite' 
direction to the change in that of the influencing element. 

The model is completed by tracing out all closed loops made up of 
successions of influence links and entermg on the diagram the nature 
of the feedback at work in the model arising from that particular loop, 
positive for a growth-promoting loop and negative for an 
equilibrium-seeking loop. 

This last activity, called 'model loop analysis', is of the utmost 
importance and some time is spent in ensuring that the principles of 
feedback in human involved, and human designed, Systems is appreciated. 
Most students are aware of feedback and its effects and in the case of 
Environmental Studies students the principles and effects of it are 
discussed qualitatively and quantitatively in course topics from pollution to 
demography. 

All of the above processes is surely modelling in the true sense of the 
term. A verbal mode) of an experience has been explored in debate and 
from it and the discussion certain elements, considered important in the 
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light of the aims of the modeller and of the model itself, abstracted. By the 
application of a simple technique coupled with the exploration of course 
connected topics further elaboration and study of the experience is 
obtained to yield further information about, and an enlarged 
understanding of, the model. No clouding of issues has arisen through the 
need to force upon an unwilling audience the removal of elements once 
believed pertinent to the problem because by not so doing the model would 
eventually prove intractable. No clouding of issues has arisen through the 
need to trivialise an interesting model in order to shoe-horn it into a pair of 
differential equations. And no 'fair model' is lost through faint hearts 
pursuant to attempts to grasp the significance of answers found through the 
blind application, under intensive tutoring, of Standard Solution 
techniques to linear and nonlinear equations and differential functions. 

The causal loop modelof Appendix 1 is complex. Any doubts as to the 
truth of the assertion of complexity should be removed by attempting to 
model the Gross World, with all five nonlinear dependencies, using 
traditional mathematical modelling techniques. 

The next stage is the investigation of the structure of the model sector by 
sector. A model sector is that part of the model containing the complete 
flow of a Single element which is subject to the law of the conservation of 
matter (conserved flow) together with all the information flows 
(non-conserved flow) which control the flow of the conserved element 
across the model boundaries. The Gross World model has two sectors 
corresponding to the two conserved flows of population and food. A 
sector's 'structure' is the totality of feedback loops which act together to 
give rise to the observed semi-permanent behaviour of the sector as 
evidenced by the change over time of some selected element in the sector. 
The structure of the model itself arises from the feedback loops that 
collectively give rise to its semi-permanent behaviour observed in the 
changes over time in that element which, in the opinion of the modellers as 
expressed in the problem stateraent, represents the Output from the model. 

This sector by sector investigation of the model by the Student group. 
though, at this stage of the modelling exercise, still essentially qualitative in 
treatment, often results in a much deeper and broader understanding of the 
topics surrounding, and upon which is based, the model. This seems to stem 
from a feeling of confidence in the model gained from its having been 
constructed, with justification, from the subject area itself and not thrust 
upon the students from another subject area, carrying with it its rules. 
regulations and seemingly arbitrary restrictions. 

2.3 The Computer model 
Appendix 2 displays Output from a microcomputer program designed to 
act as an environment in which models similar to the Gross World model, 
having been appropriately programmed from their causal loop 
counterparts may be driven through simulated time and their behaviour 
displayed as a series of trajectories of selected elements in the mode l . To 
reach this stage of the analysis the course may take one of two routes 
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depending upon the objectives of the course for which the modelling and 
Simulation exercise is being conducted. One route stems from a declared 
objective of the course being that the Student should be capable of writing 
a Computer program in a high level language and executing it. The other 
route stems from a course objective which declares that the Student should 
be familiär with, and be competent in the use of, a commercially produced 
piece of Computer Software and have had exposure to Computers through 
use of their operating Systems to obtain answers to problems. The first route 
invariably includes the second, but not always does following the second 
route cover the first. 

Most of the courses at Sunderland which contain modelling and 
Simulation, either of the style of modelling described here ('systems' 
modelling) or of the traditional school of mathematical modelling, carry 
also a course in a high level programming language and so the Sunderland 
Environmental Studies students draft models in both a current high level 
general purpose programming language and in a form suitable for input to 
DYNAMO—a MIT produced Compiler usd to execute, and poduce Output 
from, models derived from causal loop diagrams along the lines described 
above. The DYNAMO Compiler is extensively covered by texts mentioned 
in the references. 

Appendix 2 is not obtained from the DYNAMO package, but from 
Output produced by a Sunderland microcomputer program. 

To illustrate briefly how Appendix 2 is obtained it is supposed, then, 
that the next step follows the Sunderland courses and is the conversion of 
the causal loop model into a set of general purpose programming language 
Statements. Before the Statements are produced by the students it is usually 
found that the use of a symbolic modelling stage interposed between the 
writing of the model program Statements and the causal loop analysis is of 
great benefit, particularly if the model is very complex. This intermediate 
model, referred to as the 'system dynamics' model, is not entirely 
necessary, but can act as a check against inconsistencies in the model 
linkages. A system dynamics model takes the essentially qualitative, high 
level causal loop model and shifts it down the conceptual scale such that the 
mechanical task of Computer model Statement generation is only a matter 
of following the system dynamics model through each sector. For readers 
familiär with the activities of commercial system analysts the production 
of a set of Computer Statements from a systems dynamics model might be 
paralleled with that of coding a commercial program from the detailed 
flow-chart of the problem. The causal loop model may be paralleled with 
the analyst's System specification. 

System dynamics model building was developed by J. W. Forrester of 
MIT from the symbolic block diagramming Conventions of the control 
engineers. Again, for further amplification of this and related topics the 
interested reader is encouraged to explore the texts in the accompanying 
references. 

Generating the models in a high level language, once a good grasp of the 
language has been obtained, is simplicity itself for the models are based 
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0.4 -i 

Fig. 1. Table relating effect of crowding on fertility factor. 

Note DT is the small interval of time over which the rates of birihs and 
deaths per year are assumed constant. For the purposes of the Gross World 
model a value of 0.1 cycle is amply small enough. 

upon the difference equation. As an example, take the part population 
sector concerning population, fertility, average life-span and birth- and 
death-rates. The Statements for this section of the sector are as follows 

FOR 1=1 T O SIMLENGTH 
POP = P O P + D T . ( B I R T H S - D E A T H S ) 

C R O W D I N G = P O P / H A B S P A C E 
POPRATIO = POP/POPMAX 

GOSUB fertil i ty(CROWDING.FFACT) 
GOSUB lifespan(POPRATIO,LFACT) 

BIRTHS = FFA C T . POP 
DEATHS=LFACT»POP 

NEXT I 

fertility: returns FFACT by interpolation in the table in Fig. 1 below. 
life-span: returns LFACT by interpolation in table similar to that in 

Fig. 1. 
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Appendix 2 illustrates Output from a series of Simulation experiments 
carried out on the Gross World model. This form of modelling is useful for 
environmentalists because the graphical output both complements and 
reinforces the way in which other topics on the course both study and 
handle information. Take, for example, Fig. 1, a study of the behaviour of 
the small section of the model consisting of population subject to a fixed 
positive growth rate. First year students soon can produce this curve and as 
a result when the expotential growth curve is met either in demographic 
studies or in mathematical modelling understanding is enhanced through 
familiarity with the mechanisms and system structure which produces this 
effect. In addition, since each sector or part sector may be studied 
separately from the rest of the model, the underlying structure of a 
complex model may be mapped out gradually to explain which loops 
predominate and how the final structure of the total sytem may be related 
to the fights for loop dominance which take place in the dynamic arena of 
the living model as it is driven through simulated time. 

Add to all this the fact that, first, as Appendix 2 most eloquently 
demonstrates, this form of modelling, as early as the second year, allows 
the non-scientific Student the opportunity to compare and contrast a 
sympathetic form of scientifically oriented analytical methodology with 
those analystical tools of his chosen discipline: that secondly, the technique 
frees the Student from the fetters of mathematical method, but may be 
used, if desired, as a confidence building preliminary to the discussion of 
mathematically based Solution techniques or to complement results 
obtained through application of the traditional analyses of mathematical 
modelling: and that thirdly, since the technique upholds in its model 
building philosophy all that is desirable in the model origination stage then 
surely it must be agreed that one has a most useful, thought provoking, 
flexible and generally applicable, both in the sciences and in the arts, 
modelling and Simulation methodology. 



'Soft' Course Simulation 313 

APPENDIX 1: GROSS WORLD MODEL CAUSAL LOOP 
DIAGRAM 

+ 

v t 

Appendix 1: Gross world model causal loop dtagram 

APPENDIX 2 

Figure A. 1 is a study of the effect upon the population of the Single positive 
feedback loop labelled A in Appendix 1. The net birth rate initially is 
assumed to be positive. As expected the population trajectory >s the 
familiär exponential growth curve. 

Numbers X 1 0 0 

Fig. A I 
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Numbers x 1 0 3 

1 i 1 1 1 i 
0 4 8 12 16 2 0 

Fig. A.2 

The results of expanding the study to include the effects of crowding 
are shown in Fig. A.2. The negative feedback loop labelled B in Appendix 
1 is weak for low population values and loop A dominates giving 
exponential growth in the early stages. As crowding bites, exponential 
growth is moderated by the ever strengthening negative feedback giving 
near linear growth in the middle cycles. Finally, the presence of a finite 
amount of living space results in loop B dominance and the Systems coasts 
asymptotically to its equilibrium value. 

Again, the curve is a familiär one—the S-shaped, or sigmoidal growth 
curve. 

In the above way the effects of any combination of feedback loops upon 
Segments and sectors of the System can be studied. The ready graphical 
nature of the output assists in the demonstration and discussion of such 
important feedback system concepts as phase, gain, amplification and 
attenuation. 

Once the whole model has been programmed the modeller is then 
encouraged to experiment. Before doing so, however, it is sometimes 
necessary to seek the steady State conditions for the System in order to be 
fairly sure that any transient response observed pursuant to an impressed 
disturbance has arisen from the disturbance and not from system 
settlement. Figures 3 and 4 below, for example, illustrate two runs of the 
Gross World model in each of which equilibrium running for the first six 
cycles prefaces a disturbance of some kind. The trajectories of Fig. A.3 
arise from the supposition that as a result of a catastrophe in about the 
sixth cycle a substantial percentage of the population of the world has been 
wiped out. The scale of the catastrophe, however, is not so great that the 
system cannot recover fairly quickly as is shown by the asymptotic 
recovery of the population figures to the equilibrium value within six time 
cycles. The total change in the food quantity is negligible being about 0.1 
units overall. 
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4 8 12 16 

Fig. A.3. 

Fig. A.4 

Figure A.4 teils the history of the System after a catastrophe which 
r e m o v e s over 90% of the population in a short space of time. The 
trajectories are quite different from those of Fig. A.3 but readers familiär 
with System response characteristics will recognise the behaviour of a 
c o m p l e x System undergoing exponent ia l growth, inertiai overshoot and 
col lapse . 

Once 'soft course' students have grasped the significance of this form of 
graphical Output in relation to the feedback studies of the causal loop 
model of the real world System and that they can play God in a microcosm 
then in many cases the seeds are s o w n for a ready wil l ingness to concede 
that the arts and sciences can harmonise in undergraduate courses to the 
benefit of each. 
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