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Preface 

This book contains the five main lectures as well as 65 selected papers presented at the 
Third International Conference on the Teaching of Mathematical Modelling and 
Applications (ICTMA-3), Kassel University (FRG), 8 -11 September 1987. This 
conference was the third in a series of biennial international conferences on the teaching 
of mathematical modelling and applications. 

THE HISTORY OF ICTMA-3 

Relationships between mathematics and the real world, applications of mathematics, have 
existed as long as mathematics itself. During the last few decades an enormous extension 
of the use of mathematics in other disciplines has occurred, and many new sciences have 
been 'mathematised'. Nowadays the concept of a mathematical model is often used and, 
especially in the past two decades, interest has turned to the dynamic interaction between 
the real world and mathematics, to the process of translating a real situation into a 
mathematical model and vice versa, that is to mathematical modelling. 

The continued growing importance of mathematics in everyday practice has not been 
reflected to the same extent in the teaching and learning of mathematics in school and 
university. In particular the world-wide New Maths movement of the nineteen-sixties 
actually caused a reduction of the importance of applications in mathematics teaching -
contrary to the original intentions of the reformers (which were detailed in the 
proceedings of the famous conference at Utrecht in 1967). Eventually, in the nineteen-
seventies, there was a reaction to the excessive formalism of New Maths, and a return in 
many countries to the importance of applications and connections to reality in 
mathematics teaching. However, the main emphasis was put on models. 

Then, especially in Great Britain, it was pointed out that the dynamic interaction 
between tire real world and mathematics, which is importance in practice, should also be 
taken into consideration in classes at school and university. Thus, for the first time, the 
relevance of teaching mathematical modelling was emphasised, for example by the Spode 
Group, the Mathematics Applicable Group, the Shell Centre, the Open University and by 
several groups at polytechnics and universities. 
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The return to applications in the nineteen-seventies has also become apparent in 
national and international conferences on mathematics education where increasing stress 
was put on the topic of applications, for example at the Third International Congress on 
Mathematics Education (ICME-3), Karlsruhe 1976. or at 1CME-4, Berkeley 1980. There 
were also some special congresses on applications at school level: Echternach 1973 (in 
the tradition of Utrecht 1967), KJagenfurt 1976 or Bielefeld 1978. Then, at the beginning 
of the nineteen-eighties, the time was ripe for a particular series of conferences on 
teaching applications. Owing to the activities in Great Britain the first such conference 
was held at Exeter University in 1983^. with the emphasis on modelling. 

One last point in this short review. The topic of 'the relationship to reality in the 
teaching and learning of mathematics' is relevant here and now all over the world. For, 
everywhere in the world, pupils and students are to be educated to be responsible 
citizens, are to be trained towards professionalism at work, and are to acquire appropriate 
intellectual attitudes. In this mathematics plays an essential part, especially mathematics 
in connection with everyday life, with the world around us, and with other subjects and 
disciplines. For - to quote Henry Pollak in his opening lecture in Exeter in 1983 — 
'Society provides the time to teach mathematics in our schools every year. Why? Not 
because mathematics is beautiful - which it is - or because it provides great training for 
the mind, but because it is so useful.' The problems in (earning and teaching arising here 
are often identical in different countries. Therefore it makes sense to communicate with 
one another, to exchange experiences and ideas, and to learn from one another. In 
addition, there are sociocultural differences or. rather, different accentuations in the 
pedagogical discussion, which can only be understood in the light of history, and one can 
leam from these differences. Thus it is useful and extremely profitable to organise such 
periodical conferences on an international basis. 

The third conference of this kind was held at Kassel University in 1987. It was held 
there because in Germany there is a strong tradition in the field of application-oriented 
mathematics instruction. Compared with the first and second conferences, there was a 
deliberate extension of the range of topics and aspects. In the Kassel conference 
programme 

— pedagogical and didactical aspects as well as basic theoretical questions were 
extended and made more clearly recognisable 

— the complete range of ages from lower secondary up to university level was con
sidered 

— tried and tested teaching units and ideas were emphasised more intensively 
— questions concerning computers were given a more prominent place. 

Certainly this conference brought further progress with regard to these and other 
questions, and probably we are - as David Burghes said + at the second conference in 
1985 - 'heading in the right direction' with respect to mathematical modelling and 
applications. 

t See conference proceedings Teaching and Applying Mathematical Modelling, edited by J. Berry 
etai, Ellis Horwood, Chichesier, 1985. 

+ See conference proceedings Mathematical Modelling Methodology, Models and Micros and Math
ematical Modelling Courses, edited by J. Beny et at., Ellis Horwood, Chichester, 1986 and 1987. 
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We hope that this progress becomes apparent in this book. We also hope that the 
Kassel conference, as well as its proceedings, helped to consolidate the tradition of 
biennial international conferences on the teaching of mathematical modelling and 
applications^. 

THE STRUCTURE OF THIS BOOK 

All the contributions in this book deal, in one way or another, with applications and 
modelling in the learning and teaching of mathematics at school or university. 

Chapters 1—S contain the main lectures given at the Kassel conference by five inter
nationally renowned experts in the field of mathematics education: H. Burkhardt (UK), 
R. Fischer (Austria), M. Niss (Denmark), H. Pollak (USA) and H. Schupp (FRG). The 
following chapters are divided up into Jive sections. Of course, this division is by no 
means intended as a hard and fast classification of the contributions. In fact, most of the 
chapters could fit in more than one section, but have been allocated to a particular 
section in order to aid the reader. 

The contributions of Section A concentrate on various theoretical aspects of 
applications and modelling in the learning and teaching of mathematics: philosophical 
and epistemological aspects, empirical investigations, methodological questions and the 
problem of assessment. 

Section B contains examples, materials, ideas and projects related to applications and 
modelling in mathematics instruction at the lower secondary school level. In particular, 
many tried and tested teaching units for ages 11 — 16 are presented. 

Section C contains examples, materials, ideas and projects related to applications and 
modelling in mathematics teaching at the upper secondary school level, including 
vocational education. Again, most of the chapters present concrete examples for ages 
16-19 . 

The chapters of Section D deal with applications and modelling in mathematics 
teaching at universities and polytechnics. Special reference is given to modelling courses. 
Several examples of such courses from different tertiary institutions are presented, 
including some for initial teacher training. Furthermore, examples and analyses of 
applications are given which are suitable for mathematics lectures at the tertiary level. 

Microcomputers are gaining more and more importance in our society, and also in 
the educational system. Section E refers to various aspects of the use of micros in 
mathematics teaching at school and university. Several chapters describe possibilities for 
the use of computers as a tool in mathematics teaching, or for simulation purposes. Some 
contributions report on empirical research concerning the use of microcomputers in the 
classroom, and others relate to suitable software or to computer graphics. 

f The fourth conference of this series (JCTMA-4) will be held at Roskilde University (Denmark) 
3 - 7 July 1989. 
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1 
Mathematical Modelling in the Curriculum 
Hugh Burkhardt 
Shell Centre for Mathematical Eduction, 
Nottingham, UK 

1. A FRAMEWORK 

In this chapter I shall look at the development of the teaching of mathematical modelling 
over the last quarter-century or so, partly in celebration but mainly to suggest some ways 
in which further progress might be achieved. 1 shall begin with a little history: though 1 
am no scholar in this domain, a few mileposts (or their metric equivalents) are helpful in 
establishing a perspective of what has been achieved. 

The period 1955-60 produced the drive towards 'modern mathematics', a funda
mental revision of the mathematics curriculum in many countries. The emphasis in the 
changes sought varied greatly. In England there was a strong emphasis on applications, on 
the importance of using mathematics, that sprung from a long and distinguished historical 
tradition from Newton through Maxwell to Dirac and beyond. In the outcome, some ten 
years later, the text books which dominated in English schools showed hardly a trace of 
any applications of mathematics: there is a cautionary lesson here on the dynamics of 
curriculum change to which I will return in Section 3. 

However, this wave of reform triggered the development of the teaching of 
mathematical modelling in the UK in the 1960s. It was thought a good idea that applied 
mathematics should be looked at, and I became involved. Applied mathematics in the 
UK, taught in the age range 16-18, was then the Newtonian mechanics of particles and 
rigid bodies. By the end of a year-long course for teachers, I had moved to a view that the 
situation in applied mathematics was actually a great deal more serious than in pure 
mathematics — the standardised and stylised nature of the problems (ladders against 
walls, projectiles on planes, colliding balls, and so on) and the absence of any serious, 
flexible discussion of the link between the real-world situation and mathematics seemed 
inexcusable. Thus for me in 1962 began conscious work on the teaching of mathematical 
modelling. 
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Over the next few years I and my colleagues devised learning activities, mainly with 
undergraduates to whom we had ready access, but also with school teachers and their 
students. The approach was mainly informal, getting students to tackle unfamiliar 
practical problems with encouragement but with a minimum of intervention. We soon 
started looking at the problem solving processes and the strategies involved, and familiar 
diagrams began to emerge (Burkhardt, 1981; Treilibs et al., 1980). Among others, George 
Hall's contribution should be mentioned for its range and its creative imagination. One 
example must suffice - an undergraduate course entitled Information Theory, which 
has proved a fertile domain for stimulating students to work of high quality over an 
enormously broad range of practical problems, from the loading of roofing tiles onto a 
truck to the dating of English churches. 

It is no accident that this curriculum innovation began in the universities: it is a 
feature of universities that, because of the great independence of individual lecturers in 
both course design and assessment, it is easy to innovate. Unfortunately, it is 
correspondingly difficult to institutionalise an innovation so that it persists when the 
lecturer concerned moves on to other responsibilities or other places. Equally, it is easier 
to innovate in elementary schools than in secondary schools for various reasons - the 
teachers are more flexible and, covering the whole curriculum, less bound by rigid and 
traditional subject definitions. The timetable is also more flexible. 

The next crucial initiative was in the USA, in elementary schools. The USMES project 
(Unified Sciences and Mathematics in Elementary Schools) was inspired by, among 
others, Henry Pollak. led by Earle Lomon and funded by the Na t iona l Science 
Foundation in the US in the late 1960s. It introduced real problem solving to the 
elementary school classroom on the basis of substantial six-week projects carried through 
on a whole class basis. Each project was based on a challenge which had been shown to 
lead to rich and tractable classroom activities and to decisive conclusions, with a strong 
emphasis on action outcomes. It remains an outstanding achievement. Its weakness was 
in the high demands it made upon the teachers involved, both in terms of commitment 
and the range of skills that were necessary. The great majority of teachers are accustomed 
to working with detailed guidance and support, even in familiar areas of the curriculum. I 
do not believe that the level of support offered would have been adequate for most 
teachers. 

The 1970s saw the establishment of some other islands of activity around the world. 
Good books were written with a modelling emphasis but, as so often, they were not 
widely used. In the UK, the Spode Group was established: it brought a breath of fresh air 
by introducing a wide range of applications of mathematics in the form of suggested 
lessons. Many new models were introduced, though often the amount of actual modelling 
by the students seemed to be relatively small - the situations were on the whole too 
advanced to be within their reach, so models were provided. The evidence on the class
room outcomes in typical classrooms, or indeed on the extent of use of such work, is 
unclear. Indeed, there was no climate to encourage such changes, so one would expect 
take-up to be confined to the small proportion of innovative teachers. 

The situation in the UK is now changing, largely through changes in the examination 
system flowing from the Cockcroft Report (1982), and it will be interesting to see what 
happens in practice. One clear success can be noted - an alternative examination syllabus 
in Decision Mathematics (Burghes et al., 1981), with an emphasis on operational research, 
which allows schools to do such work as an alternative to mechanics in the 16—18 age 
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range: here there has been a significant take-up. Though the modelling element is 
relatively small, it represents an important extension of the range of applications of 
mathematics available to schools. 

However, the main success in the development of modelling as a curriculum 
component in the UK has been in undergraduate courses in polytechnics. These 
institutions have been created over the last 20 years, with university status but a more 
practical emphasis. Their degree-giving status has until recently been vested in a national 
supervisory body, the CNAA (Council for National Academic Awards), which monitors 
and approves all such courses. The 'benefits of colonialism' in such a situation have been 
dramatic - once a case for modelling as an integral part of the mathematics curriculum 
was established with this body, all such courses were effectively required to include it. 
This institutionalisation is reflected in the high proportion of participants from British 
polytechnics in this and previous conferences in this series. The contrast with British 
universities is stark: the distributed curriculum authority which makes experiments so 
easy means that institutionalisation is slow, only arising when there is a universal 
consensus that change cannot reasonably be avoided. I think that all of us here who come 
from British universities are aware that the modelling courses we have developed are 
likely to die if we ourselves stop teaching them. The polytechnic situation parallels that 
in schools, though the system-inertia to change is inevitably greater there. 

Thus at the present time modelling is a substantial reality in UK polytechnics. It can 
also be discerned in nearly every classroom in the early years of schooling from age 5 to 
7, in the UK as elsewhere in the world. Elsewhere in the curriculum, it is still a matter of 
hopeful signs rather than substantia] presence. In my talk at the previous Exeter 
conference (Burkhardt, 1986) I discussed the problems of providing adequate support for 
teachers, of a kind that would enable them to face such changes and implement them 
effectively and with reasonably comfort and enjoyment to themselves and their pupils. 
In later sections I shall describe what we have been doing in this regard and the problems 
that remain. 

We have been operating in a national climate that is in principle highly favourable for 
changes of this kind. In 1982 the Cockcroft Report set out in some detail what should be 
in the mathematics curriculum, and described some elements that would be needed to 
achieve the changes involved. It was welcomed very widely indeed and accepted by the 
Government as the basis for its future planning. It gave, as usual in England, strong 
emphasis to applications and in its most quoted paragraph (243) demanded a pattern of 
learning activities that implies a modelling approach. This 'balanced diet' of learning 
activities involves six elements: 

• exposition by the teacher; 
• discussion between teacher and pupils and between pupils themselves: 
• appropriate practical work; 
• consolidation and practice of fundamental skills and routines; 
• problem solving, including the application of mathematics to everyday situations; 
• investigational work. 

At present the overwhelming majority of classrooms score 2 out of 6 on this list of 
requirements: there are no prizes for identifying which two. since this emphasis on 
imitation by the students seems to be true worldwide. The problems of creating a 
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substantial curriculum component based on autonomous student activities remains 
central to our interests, since student independence and responsibility are the core of 
modelling - the integration by the students under their own command, of the various 
elements in Fig. 1. 

Finally in this introduction a little classification and definition of terms. The 
distinctions are crucial though, as with any taxonomy, different words could be used. I 
shall be brief because many of you are familiar with the issues involved. Like some of the 
other elements of this introduction, they are discussed more fully in my book The Real 
World and Mathematics (Burkhardt, 1981). 

Applications and modelling are both the concern of this conference: the latter is that 
subset of the former in which the task presented to the solver is non-routine, in some way 
unfamiliar, and the finding or designing of an appropriate model is part of the task. Many 
applications are quite rightly presented to the student essentially complete, as important 
things to know, or simply as impressive achievements of the human mind. Here two 
differences of approach are worth recognising — an application may be presented as an 
illustration of the power of a particular mathematical technique: this has value in a 
number of ways, including providing a concrete illustration of the mathematical concepts 
involved and providing standard models for use by the student, perhaps with some 
adaption, in that field of application. Alternatively, the focus of an application may be on 
the practical situation that is being studied, and how it may be better understood through 
the use of mathematical models. In my view it is essential that the students know whether 
they are being asked to operate in an illustrative or a situational way, because the 
appropriate responses are different: in the former the aim is to show off as much 
mathematics as you can, while in the latter power over the situation is the key - power 

Fig. 1 -
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of understanding, of decision and of advocacy. Using more mathematics with no extra 
payoff is actually counterproductive. 

A third important distinction is between standard models and new situations: for the 
latter we need to think of the question as to 'how new' they are and the ability of 
students to transfer knowledge to new situations at different 'transfer distances'. 

Finally a comment on interest levels. I have found it useful to distinguish Action 
problems. Believable problems. Curious problems, Dubious problems and Educational 
problems. From USMES onwards it has been widely recognised that Action problems 
(those that affect your own life and work) have advantages from a curriculum point of 
view in terms of motivation, commitment, understanding of the practical situation, and 
the ability to evaluate the model. In our work on Numeracy through Problem Solving 
(Binns et al., 1988), we have discovered that the best Action problems seem to involve a 
mixture of practicality and fantasy - this result surprised me a little at first. It has an 
important educational spin-off. In general, weak problem solvers tend to solve just one 
problem, while those who are more effective solve a 'space' of problems in which a 
particular solution is but one point or sub-space in many dimensions. This kind of 
generalisation is of the essence of fantasy. 

Though all these things are included within the field of applications, and are important 
to the curriculum, modelling occupies a special place. Modelling is not about illustrations 
or standard models — it is about new situations in which transfer is involved. Curious 
problems are important but not enough: Action problems should also be involved. 
However I warm to the opposite suggestion, that it is a mark of superior performance as a 
mathematician to be able to tackle effectively problems in which you aie not at all 
interested! However, I am sure that the mathematics curriculum has had far too many of 
these in the past: one of the real achievements of the modelling movement has been to 
reduce their dominance by introducing more Action, Believable as well as Curious 
problems. 

Finally, we have 'the big hole'. Mathematics in schools and universities is dominated 
by the learning of manipulative techniques. All the techniques taught at school level can 
now be executed more quickly and accurately on cheap technological devices - this 
applies not only to arithmetic (a calculator) but to algebraic manipulation, statistical 
manipulation, graphical manipulation and so on. (It is true that at present it is harder to 
program the algebraic manipulator than to do school level algebra, but that will soon 
change.) It is not yet known how much manipulation is needed in order to consolidate 
the acquisition of the mathematical concepts involved, but it is fairly clear that this will 
be far less than the amount now included in an often ineffective effort to produce 
fluency and accuracy with pencil and paper. Thus the big hole. Modelling and 
applications are obviously strong candidates for a part in filling it, but only if they can be 
developed to be accessible to the students and. particularly, to the teachers who will be 
involved. The people at this conference will inevitably be at the core of that effort. The 
time to deliver is soon. 

2. DEVELOPMENT METHODS FOR TEACHER SUPPORT 

It is clear that the introduction of applications of mathematics, and of modelling in 
particular, into the mathematics curriculum presents most teachers with a formidable 
challenge. It requires a much broader range of teaching strategies than the standard 
explanation + example + exercises approach to mathematics teaching. If change is to be 
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brought about on a large scale, an appropriate combination of pressure-for-change and 
support has to be developed. In England the public examination system exerts a very 
powerful effect on the secondary mathematics curriculum, in that the kind of tasks 
included in the examinations predominate in the curriculum. Indeed, all successful 
innovative development projects have included an alternative examination matching the 
project: however, the proportion of schools using such examinations is usually quite 
small, so it seemed worth trying an alternative approach. In this section I shall describe 
our work with the largest examination board in England, the Joint Matriculation Board 
(JMB), on the promotion of well-supported gradual change. 

For the last five years the JMB and the Shell Centre have been working together to 
explore and develop a new modular approach to syllabus change. The first module of 
this Testing Strategic Skills (TSS) programme was introduced into schools in preparation 
for the Board's 1986 examination in mathematics for 16-year-old students. Tlu's first 
module Problems with Patterns and Numbers (1984) was concerned with problem solving 
within pure mathematics itself: the extra demands here are a step on the way to teaching 
mathematical modelling, which is the concern of the third and subsequent modules which 
are described in other papers in these Proceedings (Binns et al., 1988). Here we outline 
this approach to supporting curriculum change. 

The key principle of the TSS programme is a cautious realistic approach, based on 
empirical development in the classroom, to introducing new examination tasks that will 
encourage curriculum changes that are widely recognised as desirable. 

The essential elements in implementing this approach are the following. 

(1) Gradual change. We thought in terms of changing the basis of just one question in 
any year, corresponding to about 5% of the syllabus or three weeks' teaching. Why 
this modular approach? Everybody, including teachers, finds it difficult to sub
stantially change what they do and this is particularly true when rather different 
methods of working are involved. Thus sweeping syllabus reforms have often had 
limited success, either because they have been taken up only by a small minority, 
or because they have been confined to details of subject content - the easiest 
changes to absorb. 

(2) Effective support. Teachers are very busy people and most base their teaching on 
well-defined schemes of work, even in areas with which they are familiar. In asking 
them to move in to less familiar topic areas or modes of classroom learning activity, 
it is important to offer them something equally supportive - the module teaching 
package is developed to do this. Of course, teachers will do things in their own way 
in their own classroom, and there will always be a range of approaches and 
materials for teachers to choose from, or to develop themselves. The module 
package is offered as one proven possibility. 

(3) Empirical classroom development. It is not possible to guess reliably what the 
effects, in the classroom or in the examination, of any significant change will be. 
As a result, the outcomes are often quite different from the original intention in 
important respects. In the TSS programme these dangers are much reduced by an 
empirical approach in which all the elements of the module are developed and 
tested until they work in the way intended with a broad sample of teachers and 
children, representative of those who take the examinations concerned. It is here 
that the Shell Centre plays the central role: it has developed new research and 
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development methods for this task, particularly emphasising structured classroom 
observation of teachers and pupils in action (Beeby, Burkhardt & Fraser, 1980). 
These are crucial for the refinement of the materials, so that they work in a robust 
and enjoyable way for teachers with a wide range of styles and approaches. 

Each Module Package consists of three components: 

(1) Specimen examination questions, with marking schemes and sample (not model") 
pupils' answers. 

(2) Sample classroom materials to support about three weeks' teaching which prepare 
children for the new types of question. The materials include pupil worksheets, 
notes for the teacher, and extracts from pupils' work. 

(3) Support materials that help teachers adapt to new aspects of classroom activity or 
teaching style - and to extend them to other appropriate parts of their teaching 
with other classes, where equally supportive classroom materials are not available. 
This component can be viewed as a do-it-yourself in-service course. 

The second module is on The Language of Functions and Graphs (1986). It aims to 
develop children's fluency in 'speaking mathematics' - and in translating information 
about the real world from one form to another. These are important modelling skills 
wliich are seriously lacking, even in many able pupils who can manipulate mathematics 
fluently (Fig. 2 gives a typical example). 

Our application of this approach to the teaching of mathematical modelling has been 
in a project called Numeracy through Problem Solving, again in cooperation with the 
Joint Matriculation Board. The key aspects of teacher support and of assessment are 
described in other papers in this volume (Binns et al„ 1988). 
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3. THE DYNAMICS OF CURRICULUM CHANGE 

This brings me back to the strategic issues involved in bringing modelling into the 
curriculum at all levels. Developing curriculum development is, I believe, an important 
new area for study. To establish this, 1 shall mention four key aspects, though 1 can only 
do so briefly here. Is there an established need? What are the opportunities for progress? 
Are there some examples of work that obviously needs to be done? What further areas 
for study present themselves? 

The need is, to me at least, self-evident. There is no established method of planned 
curriculum change, at least in many countries including the UK. Many serious curriculum 
initiatives have been undertaken, and even widely agreed, and yet observation of typical 
classrooms five or ten years later shows a qualitative mismatch between the intentions 
and the outcome. So planned curriculum change is very difficult. 

What are the kinds of failure? Low take-up is common, with most classrooms showing 
no sign of the innovation. Dilution describes the transformation of the intention (often 
brilliantly realised in the classrooms of the exceptional teachers used in the development 
process) into a pale shadow of itself in the typical classroom. Finally there is corruption, 
where some superficial aspects of the innovation are taken on board but its principal aims 
are ignored: this is particularly severe when changing roles and responsibilities in the 
classroom are involved - in routine problem solving the teacher hurries to explain or 
direct, in real problem solving it is made clear to the students that the practice of 
mathematical technique is actually the teachers main aim, and so on. 

In advancing any innovation, there is a 'catch', a dilemma that is particularly acute for 
publishers or those for whom financial constraints are dominant, but which applies to us 
all: 

If an innovation is not close to the familiar, few people will buy it; if if is close, why 
bother to develop it. 

It is this dilemma that has led us to develop an approach based on gradual qualitative 
change, where teachers are asked to change only a small part of what they teach each year 
(a few weeks with one or two classes) but to change it profoundly and qualitatively. Most 
of what they do is left unchanged and unthreatened - for this year! Provided support is 
there which gives teachers confidence that they can implement the innovation reasonably 
faithfully, we have found no resistance to such change. One should however constantly 
ask oneself 

Why should they change? 

where 'they' may be anyone in the system, but particularly the teacher who faces the 
greatest challenges. 

It is a remarkable feature of education that so little research and development goes 
into finding better methods of curriculum development and research. This is a major 
aspect of activity in many fields in which major progress is rapid, but hardly occurs in 
education. 

What are the opportunities'' To make some progress with this a framework is needed. 
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We adopt a systems approach of a kind familiar in engineering, say, but not in education 
education. The system is 

teachers teaching children — in classrooms — in schools - in society. 

Our aim is to change the way the system operates in various ways. There are various levers 
or stimuli at our disposal, but we cannot be sure what the effects will be. An empirical 
approach is therefore appropriate; we think it needs to be both practical and pragmatic, 
fundamental and profound. In order to make the system work better we need to study its 
operation at all levels, but also to leam more about its underlying dynamics. I call this 
The Bell Model: they run a telephone system and, to advance that end, find it worth
while to conduct fundamental research at the highest level in many areas from solid state 
physics through to information theory, which was invented by them. Of course, the 
education system is very different in many ways and analogies are always imperfect, but 
they can be informative. A comparison with medicine a century ago is also useful — 
fundamentally a craft profession in which more or less effective rules of behaviour were 
passed on from one generation of practitioners to another, the defects of this approach 
became evident (leeching may not cure everything) and it gradually but slowly became 
accepted that a research based approach had something to offer. What are the analogous 
aspects in education? 

I find it useful to identify various levels of research and development. These levels are: 

L — Learning research is concerned with the individual students, their understanding 
and their misconceptions and how these developed (10 1 children minimum). 

Tl — Teaching approaches are developed and researched, seeking stimuli for learning that 
will be more effective (10 a children). 

T2 - Realisable teaching is focussed on what can be achieved in practice by typical 
teachers in realistic circumstances of work and support (10 3 children). 

C — Curriculum change on a large scale brings in as well as the student and teacher 
variables those of the school, the school district and society at large ( 1 0 4 - 1 0 7 

children). 

Much more work has been done at L and Tl levels than at T2 and C level, partly for 
practical reasons but mainly because of a lack of attention to systems issues. The research 
interest is focussed on the child, almost to the exclusion of all else. This is not the only 
domain in which there are difficulties. Indeed in our work almost all the difficulties 
involved in the realisation of curriculum change arises from the difficulties of teachers, 
and the inadequate support provided to them by the system. Owing to this earlier neglect 
of so many important aspects and variables, the opportunities to do better are wide open. 

There are many areas in which there is room for more imaginative and more systematic 
work on finding better methods of research and development, but I have space to 
mention only one. However, it is an area of crucial importance - that of feedback. 

Feedback is a crucial aspect of any system, in particular of its stability and 
controlability. Even with something as well understood as sending a rocket to the moon, 
where the laws are known precisely in advance, the system must include essential 
mechanisms for detecting deviations from the intended path and for applying mid-course 
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corrections. In the education system, where the underlying dynamics is in many respects 
unknown, appropriate feedback mechanisms are essential. We have a working principle 

'fail fast - fail often' 

whose essential message is that the more rapidly you can learn of the defects and 
strengths of your ideas in practice, and revise them, the better the resultant outcomes can 
be. 

Feedback must be adequate in dimensionality — that is, in the space of variables it 
covers. In driving a car, you need to know not only the speed of the car but also the 
position of the steering wheel to understand where the car is going. In education you 
need feedback on all the essential variables for your purposes; in practice this means being 
highly selective but not too restrictive. Different timescales must be properly balanced — 
the observation time of feedback must be shorter than the time over which interesting 
things occur, while the response time in which action is taken upon the basis of the 
evidence from feedback must be shorl compared to the project time, if several cycles of 
improvement are to be possible. Both of these principles are often ignored. How best they 
can be used in detail is a matter for experiment. The quality, quantity and cost of 
feedback must be borne in mind. 

For example, curriculum materials that produce excellent results in a few classrooms 
are often, perhaps usually, not widely adopted. What feedback has been used in their 
development? Two kinds are common - testing by members of the author team, and 
written reports by trial teachers. Author testing frequently leads to some revisions but has 
severe limitations; the members of the author team have much more information on the 
intentions behind and the ideas for use of the material than are actually written down, 
because they have taken part in all the formative discussions. Reports by trial teachers 
on the other hand tend to be very sparse, providing Little detailed information. What are 
the dangers? When only exceptional teachers are included in the trials, materials are not 
usable in practice by more typical teachers. When the trial sample is fully representative 
the materials are far from being optimised and are thus not as ambitious as they could be. 
How might this be improved? 

We have developed the use of structured classroom observation of trial lessons as a 
source of feedback, and have found it invaluable in developing materials which lead to 
lessons that please the teachers, the students and ourselves as designers. The amount of 
rich detail that an observer can bring back is immense, and it can be closely related to the 
key design intentions and questions. The data typically are of three kinds: 

(1) some simple information on the lesson, and the teachers response to the materials; 
(2) an open-eyed view by the observer of significant things that happened, of short 

interviews with students during the lesson, and of with the teach afterwards; 
(3) a structured qualitative record of the rhythm of the lesson itself. 

The first two elements are familiar; the last is the core of this development method 
(Beeby et al., 1980; Burkhardt et al., 1983). This approach was developed in the context 
of the design of program teaching materials, based around a single microcomputer in the 
classroom, through the ITMA collaboration (Investigations on Teaching with Micro
computers as an Aid). Computer assisted learning materials are expensive to develop, 
so this approach to making sure that the materials worked really well seemed justified in 
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that context. However, the gains were such that we have since applied a similar approach 
to the development of all materials which aim to combine ambitious and challenging 
changes in classroom learning activities with accessibility to the typical teacher. Perhaps 
the most difficult of these challenges so far has been presented by the material on the 
Numeracy through Problem Solving. The gain in the effectiveness of the materials, in 
both positive aspects and the evidence of negative experiences from the teacher, is 
qualitative. We see this in the changing classroom reactions as each successive revised 
version is trialled. 

Some other priority areas in which such work is needed include in-service training, 
and the management of curriculum development teams. It is astonishing to me that in 
England it is rare for in-service training procedures to be evaluated in terms of changes 
in the teachers' behaviour in the classroom - surely the prime aim. Again, traditional 
evaluation of the methods are not good enough, but it is a tractable problem. Equally 
surprising perhaps, there is no profession of curriculum designer; major projects are 
normally established with teams of experienced and enthusiastic practitioners but 
including no-one who has ever directed such a development project before. It is as though 
television programmes were made without a producer or director, simply by offering the 
use of the technical facilities of the studio to those with a message to convey - politicians 
or educationalists. It would be good to explore what benefits might occur from a team 
approach in curriculum development, parallel to that in television. 

My excuse for spending time on methodology is that, in modelling terms, these are 
probably the key factors in determining whether, and how effectively, we can introduce 
modelling into the mathematics curriculum. 
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2 
Social Change and Mathematics 
R. Fischerf 
University of Klagenfurt, Austria 

COMPLEXITY, SELF-ORGANISATION AND SELF-REFLECTION 

Before speaking about the potentials of mathematics I want to indicate how I see the 
situation of human society today. I am not a social scientist and therefore by diagnosis 
will be superficial and, moreover, it must be based on the views of experts. The American 
social research John Naisbitt (1984) has pointed out ten so-called 'Megatrends', which he 
assumes will play an important role in the future of at least the western hemisphere. 
Among others the following trends were discovered: 

- the necessity for strategic thinking in terms of big systems (temporal, spatial, etc.) 
considering networks of ecological, economic, technological, social,. . . kinds; 

- a trend towards de-centralisation, from hierarchy to social networks; 
- a trend from either/or flunking towards a diversity of roles. 

In a certain sense these trends seem to be a response to a phenomenon which is also 
frequently discussed today: complexity. Recently I had the opportunity to participate in 
a conference about the Complexities of the Human Environment (organised by the 
Honda-Foundation in July 1987 in Vienna). Many contributions to that conference dealt 
with complexity in technological, economic and ecological areas, and proposals were 
made for overcoming the problems: development of appropriate technologies, more 
(international) cooperation, generation of public consciousness about these problems, 
creation of a new ethic. In my view the contribution of the German sociologist Niklas 
Luhmann (1986) was of special importance. Though his deliberations which were in a 
certain sense epistemologjcal he substantially enlarged the field under consideration. He 

•f I am indebted to W. Nemser for going over a preliminary draft eliminating language mistakes and 
improving style. 
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said complexity is not only a property of some observed facts — e.g. nature, technology 
or the economy - but it is also a property of the observation, meaning of the relationship 
between the 'facts' and the observer. In order to understand the results of observations, 
the observers must be observed too. Globally: to the observation of 'facts ' by 'society' 
the self-observation of the society itself must be added. 

A first result of this self-observation and one possible explanation of complexity is the 
fact that society today is not a uniform, homogenous block. Luhmann views it as a frame
work of relatively autonomous social systems. Examples of more or less autonomous 
social systems are the economy, scientific communities or public administration. The 
notion of a social system seems to be of high importance in sociology today and for 
dealing with social development. In order to study social systems some borrowing of ideas 
from biology and cybernetics, developed there for explaining the nature and functioning 
of living organisms, has proved useful. Principal concepts are self-organisation and self-
reference, derived primarily from the biologists Umberto Maturana and Francisco Varela. 
In their view it is characteristic of living systems in biological sense that they are able to 
reproduce their own organisation (they call them autopoietic systems). Vaxela (1986) 
asks for the development of a systems theory which is more appropriate for living systems 
than classical systems theory, which follows the paradigm of dead machines. The main 
difference is that dead machine-systems can be described by their input/output-relation, 
whereas for living systems their inner organisation, their inner coherence and their 
intrinsic structure are relevant. In living systems the interior system of rules — Varela 
calls it 'operational closure' — leads to so-called 'eigen-behaviours', which are developed 
without influence from the environment. The interactions with the environment do not 
take the form of inputs into the organism (for example information) which are processed 
leading to outputs (observable behaviour), but self-organised systems select from the 
environment according to their interior organisation, they interpret their environment, 
they give some things meaning and others not. Varela writes: 

. . . for an autonomous machine characterized by its closure and its eigen-behaviour, 
what happens is that these eigen-behaviours will specify out of the noise what of that 
noise is of relevance. So, what you have is a laying down of a world, a laying down 
of a relevant 'Umwelt'. A world becomes specified or endowed with meaning; out of 
eigen-behaviours, there arises possibility of generating 'sense'. So what we are talking 
about here is the contrast between an instructive Turing automation and an 
autonomous machine capable of creating (or generating) sense. 

(Varela 1986, § .119) 

What is the relevance of these ideas from biology for social systems? It could be that the 
identity of even such systems has something to do with self-reference, operational 
closure, and the development of eigen-behaviours. This has always been assumed for most 
highly organised living beings, for humans. But Varela's deliberations rest on empirical 
findings concerning cells, nervous systems or immune systems. If even these systems are 
able to create, through interactions of their parts, such a thing as a collective spirit, 
shouldn't social systems be capable of doing this also? There are indications that this is 
the case and this view has been adopted by some sociologists - as already mentioned - as 
well as by some management scientists. Without going into more detail now - 1 refer, 
for example, to Luhmann (1986) and Ulrich & Probst (1984) - I propose for further 
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deliberation the assumption that the concept of a social system with the attributes self-
organisation and self-reference has relevance for human development. 

In summing up our considerations so far 1 would like to give three reasons why I think 
that self-reflection of social systems as well as of systems of such systems is of special 
importance in the situation of society today: 

(1) to obtain insight into the physical, biological, human environment; for example in 
order to understand scientific propositions, one has to observe the scientists; 

(2) to understand the identity and functioning of social systems, their organisation and 
eigen-behaviours, to obtain knowledge of their hidden aims; 

(3) to arrange, create, change such systems more consciously, and let them die if we 
wish. 

INSTRUMENTALISM AND REFLECTION 

Now the question arises: Can mathematics contribute to that process of collective self-
reflection? At first glance there are opposed tendencies in mathematics. The most 
important such tendency is that mathematics is primarily viewed as an instrument, a tool, 
with which humans - as knowing or acting beings - confront themselves with a matter 
(e.g. nature). With help of this instrument they establish a distance between themselves 
and the matter, they express their differentness. As regards knowledge of nature man has 
put mathematics between himself and nature - though he belongs to nature too. This 
kind of process counteracts self-reflection. 

Additional support for the view that mathematics is falsely oriented with respect to 
self-reflection of social systems arises from Varela's confrontation of machine-like and 
autonomous systems. As an instrument for the comprehension of input/output-relations, 
as an aid in causing effects on systems from outside, mathematics has so far dealt more 
with machine-like systems. It is not by accident that mathematical systems theory is 
sometimes equated with control theory. However, exactly the statements about the 
nature of mathematics I made a moment ago are themselves reflections; reflections not 
only about a certain subject matter but also self-reflections about ourselves, about our 
relationship with mathematics and those matters to be handled through mathematics. 
More generally, each instrument which is used by man can be taken as an incentive, a 
Starting point for self-reflection, for it mirrors properties, interests and aims of people — 
individually and collectively. The more powerful an instrument is, the more potentials 
for this mirroring it offers. 

A second opportunity for using mathematics for social self-re flection conies from the 
fact that this reflection means a process of communication between people and groups of 
people. This communication can be supported by mathematics. In this case of course the 
instrumental character of mathematics is of relevance, but with the aim of self-reflection, 
which influences the kind of tools as well as the handling of them. 

In the following I want to propose rwo orientations for mathematics (as regards 
teaching, research, application), which correspond to the two above-mentioned 
potentials, and to describe these orientations in detail. They have been included within 
mathematics all along, but by crude instrumentalism they have been concealed. 1 call 
these orientations: 
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(1) the analysis of basic assumptions of mathematical concepts and theories — 
mathematics as a mirror of mankind; 

(2) problem description instead of problem solving - mathematics as a means of 
presentation and communication. 

ANALYSIS OF BASIC ASSUMPTIONS 

Let me start with an example. The following formula is well-known: 

K, = K0 q' 

It gives the amount of a capital Kt with compound interest after t years, starting with 
K0. Not so well-known is the fact that this formula is the solution of a system of 
functional equations. Taking A', as a function of K0 and t, which means 

Kt=f(K0, t) 

this system consists of the following equations: 

f(K0+Ki, 0 = / ( A ' 0 , t) + f(Ki t) 

f(K0,t + t') = f(f(K0, t),n 

(see Eichhorn, 1978, p. 10). 
Both equations can be interpreted as properties of invariance with respect to splitting. 

The first equation corresponds to a splitting of capital, the second to a splitting of time. 
More exactly: the first equation says, if you split the original capital into two parts, say 
K0 and A'o, and given them to two — perhaps different - banks, you get the same result 
as if you had invested the total amount at one. The second equation says, if you invest a 
capital first for the time period t, then take the result and invest it immediately for the 
time period t', you get the same as if you had invested the original capital for the total 
period f + r . In a certain sense these are the basic assumptions of compound interest 
calculation. We know that they are not precisely fulfilled in reality. You get a higher 
rate of interest for a larger capital as well as if you invest for a longer time period. 

An interpretation of this example in a social context could be the following: the 
main purpose of laTge amounts of capital for long time periods in our economy is to cause 
collaboration in order to reach more productivity than the sum of the productions of 
individuals would yield. The classical formula for compound interest neglects this 
purpose. It abstracts on the one hand from the effort necessary to bring people - or 
capital which is the same in the economy - together, and on the other hand from the fact 
that if you succeed in bringing people together you can get more than the sum of that 
individually reachable. 

It is well known that mathematics itself is very much engaged in reflection on its 
concepts, theories and procedures - as in the above example by proving the theorem that 
the formula for compound interest is the solution of a certain system of functional 
equations. One can say the theories of applied and even of pure mathematics are results 
of such reflections. Areas of study include the questions under which assumptions which 
procedures can be applied, how the results can be interpreted, and so on (think, for 
example, of mathematical statistics). However there are differences with respect to the 
relevance for social self-reflection. 
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Take the concept of number. One can view theories of the natural or of the real 
numbers as reflections about the concept of number. The focus is the logical dependence 
of statements, consistency, relative existence, or proof of non-trivial theorems (e.g. 
concerning tire distribution of primes). Another perspective of reflection on the concept 
of number, which 1 view as more fundamental with respect to social self-reflection, is 
pursued by the theon' of measurement. This theory is concerned with the question: 
Under which assumptions it is meaningful to associate aspects of 'reality' with numbers, 
and how this can be interpreted? A basic assumption of each measuring procedure is the 
construction of a mapping 

f:A-R 

from a set A of 'real' tilings into the real numbers, whereby certain relations in A are 
mapped onto 'sensible' relations in the image set, such as onto the natural ordering or 
onto addition. A simple theorem of measurement theory about the possibility of such a 
construction is the following. 

Theorem 
Let A be an at most countable set and S a binary relation in A. Then there exists a 
mapping f: A -»• R satisfying 

Va.bGA ••aSb<*f(a)<f(b) 

if and only if S is a strict weak order (see Roberts, 1979, pp. 101, 102, 109). (A strict 
weak order as an asymmetric relation, the negation of which is transitive.) 

According to the degree of uniqueness of the 'measurement mapping' /different so called 
scale-types are defined — such as ratio scales, ordinal scales, and so on. The theory yields 
that certain operations with quantities are only meaningful under certain assumptions. To 
this belongs the well-known fact that computation of the arithmetic mean is not 
meaningful for ordinal scales. 

Though measurement theory remains within mathematical modes of inference and 
of representation, it also opens up fundamental perspectives. It studies the principles of 
what we are doing when measuring, but furthermore it poses questions about extensions 
and alternatives, for instance about non-numerical or multi-dimensional measurement (cf. 
Roberts, 1979). Here I want to make a very concrete didactic suggestion: measurement 
theory should belong to the basic education of all mathematicians. Thereby the dominant 
tendency of theoretical refinement and of the search for interior dependencies with 
respect to one or more concepts would be supplemented by reflections about their 
relationship with things outside the world of mathematics, on a level which is more 
fundamental than treating only some isolated examples of model-building. 

The final example for the orientation 'mathematics as a mirror of mankind' that I 
mention here is the most fundamental: considerations about connections between the 
organisation of knowledge and the organisation of society. The philosopher and social 
scientist Gerhard Schwarz (1985) interpreted the four axioms of classical logic, namely 
identity, the exclusion of contradictions, the exclusion of the middle and the principle 
of sufficient reason, as axioms of hierarchy as a mode of social organisation. 1 have 
extended this interpretation by establishing the 'equation': 

logic: hierarchy = mathematics: bureaucracy 
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(see Fischer, 1987). The analogy is based upon various common aspects of mathematics 
and bureaucracy, for example autonomous rule system, materialisation of the rules, 
procedure-orientation. To avoid misunderstandings I point out that I don't have such a 
negative opinion about bureaucracy as is usually held. For many matters 1 find it an 
efficient way of organising social life, in any case it was a historically necessary step in 
developing modes of organisation. Studying and creating bureaucracies can also be very 
fascinating - as fascinating as is the studying and creating of mathematics. 

One can write the above equation also in the following way: 

logic:mathematics = hierarchy: bureaucracy 

Now this means that logic plays a similar role for mathematics as does hierarchy for 
bureaucracy: both are in some sense the 'organisational skeletons'. 

By the way, I recently read about a research result concerning the problem solving 
capacity of small groups which indicates a connection between the kind of information 
processed and the organisation of a group. If you have noiseless communication about 
clear matters then hierarchically organised groups get better results (in coordinating 
information). However if 'noise' is introduced by giving contents which cannot be spoken 
about so clearly then 'heterarchical' groups are better. They are able to develop a 
language, whereas hierarchical groups tend to fall apart (see Foerster 1984). Does this 
tell us anything about mathematics? 

PROBLEM DESCRIPTION 

Through the following example, taken from a lecture by Fred Roberts (1986), I shall 
demonstrate the difference between conventional mathematical problemsolving and 
what I intend. Roberts posed the following problems: 

Given a rectangular street system of a city, each street being two-way. Because of 
heavy traffic there is frequent congestion and considerable air-pollution. Therefore 
the government decides to make all streets one-way. How shall it be done? 

(Roberts, 1986) 

One postulate is of course the possibility of reaching every place from every other place. 
Mathematically formulated, the arising digraph must be strongly connected. However 
which other postulates are to be posed? What criteria exist for the efficiency of a 
solution? Roberts made the following proposals: 

For two vertices u, v of the street-system-graph (i.e. crossings) let d(u, v) and d\u, v) 
respectively be the lengths of the shortest connection in the old (undirected) and the 
new (directed) graph respectively. Consider the following quantities {n = number of 
vertices): 

(1) maxu „J(u, v) 

—-— £ d(u, v) 
(2) n — n " v 

(3) maxu^ [3(u, v) - d(u, v)] 
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(4) [<7(u, v) ~d(u, v)] 

(5) 

(6) - £ u max„ 3[u. V) - max,, t/(u, f)) 

With respect to each of these quantities one can argue that the smaller this quantity 
the better the solution. An optimal solution is obtained if this quantity is minimal. 

Roberts offered solutions for parts of the problem, especially for two of the above 
criteria for optlmality, obtained by sophisticated combinatorial reasoning. Tlds means he 
presented certain patterns for one-way-street systems. 

Now I pose the question: What does audi a solution mean for practical purposes'! Not 
too much, 1 think. First, it Is unlikely that all streets would be two-way and would have 
to be made one-way at once, and certainly also not all streets would be equally 
important. There are districts where people live and others where they work, the density 
of population need not be homogenous, and so on. This means that none of the given 
global criteria for optimally seems to be totally appropriate. Moreover also other global 
criteria could hardly do the job. Further it is possible thut the people of the city simply 
want, without clear reasons, a certain street to remain two-wuy. Finally one has to take 
into consideration (he public action of citizens if a 'solution' were to be implemented In 
reality. (Roberts made similar comments In his lecture.) 

Does this mean that mathematics Is completely useless for this kind of situation? Not 
at all! I think that mathematical concepts and modes of representation are In this case 
appropriate for a description of the problem. Undirected and directed graphs offer a 
visualisation of the situation and can be used for experiments (e.g. simulations). The 
formulation of the quantities (1), (2) and (3) indicate different points of view In 
improving decisions. Further concepts can be developed, such as considering the status of 
streets as main or side-streets according to the present traffic, the system of public 
transport, the division into districts and so on. For this purpose concepts of graph theury 
can be used - for example that of flow in a weighted graph - or new ones can be 
invented. Of course the complexity of the problem would thereby Increase und a 
mathematical algorithmic solution would drift out of reach, (Even for criterion ( I ) it Is a 
n-p-complex problem). However, it would not be the task of this process to find a 
solution. Rather the task would be to give a good description of the problem In order to 
enable the people of the city and their authorities to discuss the situation and muke 
sensible decisions. 

What about the connection with self-reflection? Clearly It Is not such a fundamental 
one as is considering relationships between mathematics and hierarchy, not even as 
deliberations about basic assumptions of the formula of compound interest. However It Is 
the reflection on the needs and wishes of people in a certain social system, with respect to 
a given problem situation. Of course reflections of this kind arc also included In 
conventional mathematical modelling. One wants to experience the Interests und desires 
of the people concerned, In order to Improve and refine the model. However the goal Is 

(Roberts, 1986) 
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always to obtain it (the) final solution. Therefore those who construct the model 
emotionally are disturbed by the appearance of new aspects or even of contradictions. 
They want to be told once and for all what people want so they can concentrate on 
solving the problems. In contrast to this traditional orientation the mathematician 
oriented according to my suggestion understands himself as an explainer of the problem, 
who helps people to articulate their imaginations, who points to alternatives; sometimes 
even as somebody who slows down the process of solving the problem. Whereas in the 
traditional way of proceeding the mathematician tries to reduce complexity and to 
exclude alternatives, in this case he acts according to the 'ethical Imperative' formulated 
by Heinz von Foerstcr (1984, p. 3). 

Act ulwuys so as to Increase the number of choices. 

From various areas of application of mathematics voices can be perceived arguing In a 
similar direction as 1 am doing now - though mostly not as radically. One area Is that of 
applied systems analysts where so-called 'Interactive declslon-support-systems' and 
'strategic models' are intended to serve as means of communication (see, e.g.. Dreyfus & 
Dreyfus, 1986, p. 192, or Meadows, 1986), Another example Is that of measuring 
economic inequality. Different measures yield different results, but they can be used as 
'prima facia arguments, pcrmltlng situaUun-speclfk considerations' as Sen (1973. p. 75) 
argues. All tills can be embedded In some considerations of the psychologist Lee 
Cronbach about the tasks of research In social science today, They are particularly 
remarkable In our Context since Cronbach was (Is?) one of the main advocates for the use 
of mathematical methods Ln social sciences. He writes: 

Concepts contribute to pluralistic decision making by helping participants examine 
their situations and values . . . The social scientist helps not by playing expert but by 
playing educator, eternally pressing the question, 'Have you taken X and Z Into 
account?' Social science Is cumulative not in possessing ever-more-defined answers 
about fixed questions but In possessing an ever-richer repertoire of questions. The 
educative Influence of a piece of research may extend far Into the future. Concepts 
have enduring value, and so does a sense of what-connects-to-what. 

(Cronbach, 1982, § 7 2 - 7 3 ) 

DISCIPLINING AND OBJECTIVATION 

The two orientations 'mathematics as a mirror of mankind' and 'mathematics as a means 
of communication' are concerned with analysis and synthesis of social reality. The first 
orientation gives more emphasis to analyslJ. By reflecting about given mathematics one 
tries to analyse social relations which are mirrored In tills mathematics. The second 
orientation Is more directed towurds synthesis. Through communication social relations 
are constructed, social systems with their Identity, operational closure and eigen-
beltaviour ure established. 

Social systems have always been constructed with the help of mathematics; 
pedagogues have called the effect nf this process on the Individual 'disciplining' 
{Dlszlpllnkrung ln German, meaning 'shaping people like soldiers'I and have criticised It. 
I think that dlsclpling Is Inevitable when constructing social systems. I think even that 
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more disciplining by mathematics will be needed in the future, but that this should be 
done more consciously and that the means should be more appropriate to the aim of 
constructing systems the elements of which are humans. 

The function of mathematics in the process of collective self-reflection is objectivation 
in the sense of reification. Social and other relations are made objects, and I also mean 
this literally in the sense of materialisation. Mathematics offers visual pictures, which 
usually have to be interpreted in a symbolic way, that means for their understanding 
one has to know certain social conventions. Pictures of this kind are indispensable for 
communication, if it is to be expanded beyond the scope of small groups. It is not the 
case that we should use mathematics for communicative self-reflection simply because 
it is here - though this would be a sufficient reason - but without mathematics, or 
better without a world of symbols reflecting certain relations, we would be in trouble. 
The French pre-historian and anthropologist Andre Leroi-Gourhan even writes: a 'society 
with declining capacity of creating symbols would lose its capacity for action' (cf Leroi-
Gourhan, 1980, p. 267; see also Fischer, 1984). fn this spirit, and considering the 
potential of computers, I believe that there will be a shift of importance in mathematics 
from handling given symbol systems towards the creation of new symbols, in connection 
with study of the suitability and social relevance of the symbols. Maybe this is 
simultaneously a step towards a de-mystification of the symbols. There is always the 
danger that a necessary objectivation of the abstract leads by mystification to a 
Verabsolutierung (making absolute) of present states. By the way, a very powerful, and a 
wide sense mathematical, objectivation of abstract issues li money - where we face the 
cited danger every day. 

It would be interestinj to analyse the relationship between disciplining and 
objectivation through mathematics from a loclo-phlloiophksJ point of view. 
Objectivation of social relations on the one hand means to establish a distance between 
ourselves and exactly those relations; thereby It Is a means to get free of them. We 
become able to handle and to manipulate these relations ™ all this can Increaso freedom 
of the Individual and of society. On the other hand, objectivation gives the social relations 
an absolute, maybe even eternal, character - thus disciplining gots more emphasis. It 
becomes more severe, rigid and oppressive. The construction of social systems with 
mathematics is pursued in such a way that there is only one possibility, nobody can 
escape. The 'insight into the necessity' or the lack of it - both can make things repressive 
for the individual. 

1 think the way to keep the advantages and to avoid the disadvantages of objectivation 
is to make the process of objectivation, the construction of symbols, more explicit and 
to make it available to people. Thus the objects would lose their absolute, eternal 
character, It would be seen that there are alternatives. Simultaneously the construction of 
social systems and the Inevitable disciplining would become more playful, as is the case 
for the construction of mathematical systems according to a formalist pliilosophy of 
mathematics. I think that one of the problems of social change Is that we are too serious 
about social matters. This seriousness does not allow the flexibility we would need in 
order to cope with the problems of toduy. Muthemutlcs is also guilty of this seriousness. 
On the other hand mathematics would also offer play and freedom. To state It as a 
prophecy: socially we have not yet attained that degree of freedom and flexibility which 
we have reached In pure mathematics. As an optimist I say: we are on the way. 
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3 
Aims and Scope of Applications and Modelling 
in Mathematics Curriculua 
M . Niss 
Roskilde University, Denmark 

Among the many issues which deserve attention in discussing the aims and scope of 
applications and modelling in mathematics education the following are fundamental. 

(1) The question of why?. 
Should, for a given educational level, applications and modelling be part of the 
mathematics curriculum? If yes, why? 

Provided the answer to this question is 'yes', two more questions pose themselves. 

(2) The question of what?. 
What content, products, and processes related to applications and modelling should 
be made object of study, teaching and activity? 

(3) The question of how?. 
What means would be appropriate for applications and modelling activities, and 
which are actually at the disposal of teachers and students? 

It is to be expected that the answers to each of these questions depend on which segment 
of the educational system is considered. Let us agree, in this context, to distinguish 
between three types of mathematics education referring to three different educational 
levels. 

(1) The general mathematics education of the population - predominantly supplied by 
the school system - which aims at preparing students for their private and social 
lives as individuals and citizens. 

(2) The mathematical education of people studying subjects or preparing for 
professions which are not, in a specific sense, mathematical in themselves, but to 
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which mathematics - by being applied in them - has important services to offer. 
We shaJJ call people in such professions users of mathematics in extra-mathematical 
professions, 

(3) The mathematical education of people who are to enter mathematics professions 
proper, as research mathematicians, as general applied mathematicians, or as 
mathematics teachers for post-elementary levels (i.e. for secondary school and 
above). 

If we combine the three questions with the three educational levels we obtain the 
following question matrix which forms the focus of attention of the present chapter. 

Question 

Educational level 

Why? What? How? 

General mathematical education provided by 
the school 

Education of users of mathematics in extra-
mathematical professions 

Education of mathematics professionals 

In what follows I shall attempt to analyse parts of this matrix. Along with doing so I shall 
give my personal answers to a few of the cell questions. Due to space restrictions, only 
the Why and What columns will be considered. 

THE QUESTION OF WHY? 

The most important arguments for including applications and modelling in a given 
mathematics curriculum seem to be the following five. 

Applications and modelling should be part of the mathematics curriculum in order to: 

(1) foster among students general creative and problem solving attitudes, activities and 
competences; 

(2) generate, develop and qualify a critical potential in students towards the use (and 
misuse) of mathematics in extra-mathematical contexts; 

(3) prepare students to being able to practice applications and modelling - in other 
teaching subjects, as private individuals or as citizens, at present or in the future, 
or in their future professions; 

(4) establish a representative and balanced picture of mathematics, its character and 
role in the world - such a picture must encompass all essential aspects of 
mathematics, and the application of mathematics and mathematical modelling in 
other areas do form one such aspect; 
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(5) assist students' acquisition and understanding of mathematical concepts, notions, 
methods, results and topics, either to give a fuller body to them, or to provide 
motivation for the study of certain mathematical disciplines. 

The character and status of these five arguments are not the same. Arguments (1) and (5) 
relate primarily to educational tactics. Argument (1) focusses on formative aspects of the 
general education and personal development of students, not on matters specific to 
mathematics. Mathematics and application and modelling activities are to serve as a 
vehicle to a general end, rather than to be of independent interest. In aiming at 
facilitating or improving mathematics teaching, argument (5) is concerned with teaching 
tactics. Applications and modelling form a vehicle to this end. The argument would not 
make sense [(mathematics were dispensed with. 

In pursuing the purpose of preparing students to aspects of life outside mathematics 
education, arguments (2) and (3) deal with general educational strategy. In both 
arguments students are wanted to come to grips with the actual use of mathematics in the 
world; in argument (2) in an analytical way, in argument (3) in a constructive way. To 
both arguments, mathematics and applications and modelling are essential components, 
not replaceable vehicles. 

Argument (4) concerns students* perception of mathematics as an entity, thus 
addressing mainly epistemological issues. In contradiction to (2) and (3) which look at 
the world outside mathematics and views mathematics as a factor in this world, argument 
(4) looks at mathematics. 

All these arguments can be encountered in discussions on each of the three educational 
levels identified in the beginning of this paper. Still, for a given level, some arguments 
seem to carry more weight in the didactical debate than do others. The diagram below 
summarises this. 

Arguments for 
Why? 

General mathematical education provided by the school (1) (3) (5) 

Education of users of mathematics in extra-mathematical 
professions (3) (5) 

Education of mathematics professionals (3) (4) (5) 

Apparently, arguments (2) and (4) have not gained much attention. In my view this is 
not satisfactory. I shall try to explain why, and to establish an alternative priority. A basis 
for doing so is needed. The decision to include applications and modelling studies and 
activities in the mathematics curriculum of a given educational level should be derived 
from a consideration of the overall purposes of mathematics education for that particular 
level. 

We will consider School mathematic education first. Several reasons for providing the 
general population with a mathematics education which goes beyond elementary 
arithmetic with known figures have been put forward through the ages. Frequently, the 
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utilitarian contributions of mathematics as an instrument for tackling needs relevant to 
society have served to justify the presence of post-elementary mathematics in the school 
curriculum. Sometimes mathematics education has been seen as a vehicle for forming and 
developing intellectual and other mental capacities in people, or as a means for 
encouraging creative activity among students. Sometimes mathematics has been viewed as 
a source for aesthetic experiences, or as a testimony of the cultural achievements of 
mankind. Most often a combination of these reasons has constituted the justification of 
school mathematics education. 

To me the ultimate reason for giving a substantial mathematics education to the 
general population is that mathematics is being used extensively and ever increasingly in 
society, for better and for worse, in such a way that people's professions and lives as 
individuals and citizens are strongly influenced by it. The main purpose of mathematics 
education is to help them become competent, independent individuals in all aspects of 
their lives, and not victims in their association with mathematics in society. This 
reasoning recognises the dual interest of a raising a well-educated labour force and in 
promoting a democratic development of society. 

Now, if the mathematics education given in school is to comply with the purpose put 
previously, it must provide students with prerequisites for understanding, assessing and 
handling aspects of the use of mathematics Ln other areas. The use of mathematics is 
brought about through the construction and application of mathematical models, even if 
the modelling process is not always explicit, let alone transparent. If we agree that the 
prerequisites mentioned are not generated automatically by a mathematics teaching 
focussing solely on pure mathematical concepts, results and topics, we are led to conclude 
that applications and modelling should be part of the school mathematics curriculum. It 
appears that we are invoking arguments (2) and (3). This does not imply that arguments 
(1), (4) and (5) do not have parts to play here, but they are derived arguments of the 
second order. 

The basic reason for providing mathematics education to future users of mathematics 
in a given Extra-mathematical profession is, of course, that mathematics is applied - or 
applicable - in the preparation for or in the practice of that profession. This is why 
mathematics is often labelled a 'service subject' to such professions and to studies leading 
up to them. 

At first sight it seems easy to establish that applications and modelling should be 
included in the mathematics curricula preparing for these professions, simply because of 
argument (3). I would, however, like to add argument (2) to the motivation. The back
ground for this is the following. 

When considering the range of areas to which mathematics is a service subject, it is 
important to keep in mind that the part which mathematics plays in different areas 
varies very much with the area. We are faced not only with a variation in degree and 
extent over the disciplines, but also with a variation in character. 

In some subjects (of which physics is the chief example), mathematics is integrated in 
the very formation of the basic scientific concepts and theories, many of which cannot 
even be formulated without mathematics. In addition to this comes the highly complex 
part which mathematics plays in such subjects in finding solutions to problems, in 
establishing results, and so on. It is a general feature that in these disciplines mathematics 
is demanded to provide exact answers or, if this is not possible, exact estimates of 
errors. 
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To other disciplines, mathematics is, although higlily relevant and useful, not essential 
in the same way as with the group of disciplines mentioned above. In biology and 
economics, theories and results often exist which make sense and can be formulated 
without the use of mathematics, but which may also benefit strongly from a 
mathematical formulation. Another major difference between physics and, say, macro
economics is that physical theories are established through a very elaborate interplay 
between experimentation/observation and exact mathematical model/theory-building, 
whereas in macro-economics experiments are not possible in general. So, one would only 
very rarely require quantitative statements in macro-economics established by means of 
mathematics to be exact. Rather one would go for and expect qualitative statements. The 
same holds in biology, even if in biology experimentation is often a possibility. Exact 
quantitative statements would in general be too much to hope for, mainly because living 
beings display too complex behaviours. 

If the part played by mathematics in academic areas displays a large variation in 
character, the variation becomes even larger when the full range of extra-mathematical 
professions are considered. This indicates that the application of mathematics in extra-
mathematical contexts is not an unproblematic and straightforward affair. On the 
contrary, applications and modelling involves practical, scientific, philosophical and even 
political complications which deserve careful and critical attention. Therefore, the 
inclusion of applications and modelling in the mathematics curriculum for users in extra-
mathematical professions of all kinds should rely also on argument (2). As to arguments 
(1), (4) and (5) their place in this context is almost identical with their place in the school 
context, for which reason we shall not comment on them any further. 

If, finally, we turn to the mathematics education of Mathematics professionals, we 
encounter a somewhat different situation. To these professionals, the role of mathematics 
cannot be reduced to its application in other areas. They are mathematicians, whether in 
pure research, in general applications, or in teaching. By definition, mathematics forms a 
crucial and indispensable component in their work. In my opinion, however, it is 
important that they obtain a representative and balanced picture of mathematics in all its 
aspects, including applications and modelling. Not only do they become more competent 
research mathematicians, general appliers or teachers of mathematics, if their outlook on 
mathematics is broader than one having only mathematics as a theoretical edifice in its 
field of vision, but also their social functions as expert citizens gain in quality if they are 
educated to become broad-minded professionals with sound judgement, rather than just 
specialists. 

So, I shall invoke first of all argument (4) and secondly argument (2) to motivate the 
inclusion of applications and modelling studies in the curriculum for future mathematics 
professionals. Again, some of the remaining arguments have their parts to play. Argument 
(3) is derived from arguments (4) and (2): if students are to obtain a genuine and 
substantial impression of the application of mathematics, they must be prepared as if 
they were to practice it - at least on a small scale - themselves. Finally, argument (S) is 
relevant in relation to the education of mathematics professionals to the extent 
that applications and modelling do in fact assist the motivation for or the acquisition and 
understanding of mathematical concepts, methods, results and topics belonging to that 
educational level. 

Let me summarise my answers to the Why? question by listing my main arguments in 
the Why? column 
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Why? 

General mathematical education (in the school) 

Mathematical education of users of mathematics in extra-mathematical 
professions (2) (3) 

Education of mathematics professionals 

(2) (3) 

(2) (4) 

(2) (3) 

Although already implicitly given by the preceding discussion, it should be made explicit 
that these answers imply, for all educational level, the answer Yes! to the question 
'Should applications and modelling be part of the mathematics curriculum for that level?' 

If taken seriously, arguments put forward for incorporating applications and modelling 
studies and activities in a given mathematics curriculum influence the way in which 
applications and modelling are treated in the curriculum and in the mathematics teaching. 
Applications and modelling work introduced only to motivate and assist students' 
acquisition of mathematical concepts and so on is likely to differ from application and 
modelling activities designed to enable students to practice application and modelling in 
areas outside mathematics. Therefore, the answers to the questions What? and How? must 
depend intimately, in principle and in practice, on the arguments given to the question of 
Why?. This takes us to the next section. 

THE QUESTION OF WHAT? 

What do we mean by an 'application' of mathematics, by 'applying' mathematics and by 
'applied mathematics' and 'applicable mathematics'? What do we mean by a mathematical 
'model', by mathematical 'modelling', mathematical 'model-building' and by 
'mathematisation'? We shall have to content ourselves with giving a few working 
definitions. 

Let us imagine an arbitrary area of extra-mathematical reality (a segment of real life, 
whatever that is, or of another discipline). If the area is submitted to any kind of treat
ment which involves either mathematical notions or concepts, methods, results, topics or 
theories, we shall speak of the process of applying mathematics to that area. For the 
result of the process we shall use the term an application of mathematics. 

It appears that the term an 'application of mathematics' represents the broadest 
possible activation of mathematics to areas outside mathematics itself. The terms 'applied 
mathematics' and 'applicable mathematics' do not carry independent kinds of meaning in 
the present paper. When used here, they simply indicate portions of mathematics (from 
notions to theories) activated in an applicational situation. Thus, 'applied' or 'applicable' 
mathematics do not refer to specific mathematical topics which, unlike 'pure' topics, are 
supposed to be of particular applicational relevance. 

When a segment of reality is submitted to any kind of treatment by mathematical 
means, a mathematical model is necessary involved. Very briefly speaking, certain 
objects, relations between them, and structures belonging to the area under consideration 
are selected and translated into mathematical objects, relations and structures, which are 
then said to represent the original ones. Now, the concept of model can be defined in two 
different ways. The first possibility is to simply identify a model with the collection, Al, 
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of mathematical objects, relations, structures, and so on. irrespective of what area is being 
represented by the model and how. The rationale of this option is that a given collection 
M might serve to model many different areas. The second possibility is to define a model 
as the triple (A, M, f), where A is the segment of reality under consideration, and /" is a 
mapping which translates certain items of A into items of M. This definition emphasises 
that a mathematical model is a model of something. We shall adopt it in the present 
paper, which will not prevent us from using more casual phrases such as 'within the 
model', 'properties of the model' and the like, to indicate matters related to M alone 
when it is convenient and there is no danger of ambiguity. 

By modelling, or model-building, we shall understand the full process of constructing 
a mathematical model of a given area. At a minimum, it comprises (a) identifying the 
features of reality which are to be modelled; (b) selecting the objects, relations, and so on 
relevant to this end; (c) idealising them into shapes suitable for a mathematical 
representation; (d) choosing a mathematical universe to hold the model (M); (e) per
forming a translation from reality to mathematics; ( /) establishing mathematical relations 
between the translated objects, accompanied by assumptions and properties; (g) using 
mathematical methods to obtain mathematical results and conclusions; and (7i) 
interpreting these as results and conclusions concerning the original area. In addition the 
process may include (i) assessing the model of confronting it with reality (e.g. observed 
or predicted data), by comparing it with other models, by relating it to established 
theory; and finally: (J) building, if necessary, a new or modified model, thus running 
through the stages (a)—(/) once again. 

As regards the term mathematisation it is often used as a synonym for 'modelling' or 
'model-building'. We shall attribute a more precise meaning to it by defining it to be the 
translation part of the modelling process, i.e. the stages ( a ) - (e ) above. 

So far in this section we have been exercising conceptual and terminological 
gymnastics. We shall now address the question of What?. 

There are different modes of making applications and modelling objects of study and 
activity in mathematics instruction. 

(1) Students may acquire knowledge of 
(a) existing models and applications of mathematics - this may include know

ledge of different categories of models, classified according to mathematical 
characteristics as well as to characteristics regarding the different appli-
cational areas to which the models refer; 

(b) characteristics of the modelling process, either in general or with respect to 
specific categories of models. 

(2) Students may perform modelling themselves, either by 
(a) applying models known to the students to situations which are new to them; 
or by 
(b) building new (to the students) models, or modifying known ones. 

(3) Students may critically analyse and assess models, existing ones or models they 
have constructed themselves with respect to 
(a) their mathematical properties (work inside the model); 
ot to 
(b) the properties, qualities and bases of justification of the models as represen

tations of given segments of reality. 
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If, for our present purpose, we define these properties to form the aspects of applications 
and modelling, we may phrase the main question of What? as follows. 

Which of these aspects should be included in the mathematics curriculum of a given 
educational level? To answer this question we will have to make use of the arguments 
which were put forward to answering the question Why? in the preceding section. In that 
section one conclusion, common to all the educational levels considered, was that 
applications and modelling should be part of the mathematics curriculum in order to 
stimulate a critical potential in students towards the use of mathematics in extra-
mathematical contexts. It seems pretty obvious that to this end students should acquire 
experiences in analysing and assessing models and modelling processes which are suitable 
for their educational level. In other words, aspect (3) should enter into the mathematics 
curriculum of any level. 

Evidently, the capability of analysing and assessing models and modelling must rest on 
some knowledge of models and modelling. Hence if, for each level, mathematics 
education is to deal with aspect (3), it has to comprise also aspect (1). 

Moreover, it was concluded in the Why? section that a further argument for including 
applications and modelling in the school mathematics curriculum, and in the education of 
users of mathematics in extra-mathematical professions, was that students should be 
prepared to practice applications and modelling. Since practising applications and 
modelling implies performing modelling and since, as previously stated, we hold the 
opinion that the ability to perform modelling needs educational training, we axe led to 
infer that aspect (2) should also be addressed in the mathematics programmes of those 
educational levels. 

As to the education of mathematics professionals, we shall recall a previous 
consideration - namely thut If students are to obtain a genuine and substantial 
Impression of the application of mathematics outside mathematics Itself, they must be 
prepared as if they were to practice it - to some extent - themselves. So. aspect (2) 
ought to be part of the mathematics curriculum for mathematics professionals too. 

We have, thus, readied the conclusion that alt the aspects here defined should be 
Incorporated In the mathematics education given at each oj the three levels. This does not 
Imply, however, that the aspects are equally important, or that they materialise ln the 
same way, at different levels. In fact they do not. At school level, for instance, aspects 
( la) and (2) will occupy a predominant position. In the education of extra-mathematical 
professionals, (3b) and (2) wiU be focussed, whereas the education of mathematics 
professionals will tend to stress aspects ( la) and (3a). 

For each aspect adopted in a given mathematics programme several further questions 
arise, If we take, for Instance, aspect (1), 'acquire knowledge of models and the modelling 
process', it Is Immediate to ask 'what knowledge?'. Similarly with the other aspects. 
Naturally, It goes far beyond the scope of a single paper to deal, In a comprehensive way, 
with all relevant Issues of this kind. I shall confine myself to addressing a single point. 

In the preceding section it was stressed that the part played by mathematics and 
mathematical models In different extra-mathematical areas varies strongly ln extent and 
character with the area. The eplstemological position of mathematical models varies 
with respect to several issues. 

(1) The purpose of models. Is the purpose of a given model to understand features of 
the area modelled, or is It to create a background for making decisions or taking actions 
related to that area? 
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(li) The sources of model construction. For a given model, what arc the conceptual 
and other connections between the components of the model and the constituents 
(objects, relations, phenomena) of the area It is supposed to model? How, further. Is the 
model related to theory concerning the extra-mathematical substance of the area 
modelled? 

(lii) The nature of the statements produced. Are the statements generated by a given 
model deterministic or stochastic, quantitative or qualitative, oxuet or approximate? 

(iv) The vertflcatlonat status of models. To whut extent Is u given model reliable? What 
is its explanatory value? On what foundutlon can we hope to tackle such questions? Does 
the model reproduce known data or phenotnenae? If yes, within whut range of cases7 
Is the model corroborated by, or at least not In contradiction to established theory of the 
area at issue? Is the model related to other models In analogous situations? 

Unfortunately, we have to abstain from exploring In any detail examples which may 
Illuminate the outlined eplstemologlcal variation of mathematical models, Let me just 
mention that the way in which plane triangles and their properties In Euclidean geometry 
serve as models of certain earthly physical objects, and the way lit which the logistic 
growth model represents biological populations, are of a quite different nature. 

Similarly, the models from classical mechanics used to describe satellite orbits differ 
fundamentally from Polsson processes taken to model the number of customer arrivals 
to a supermarket In certain time Intervals. If the triangle and the satellite models were 
overruled, entire established theories would break down, not just the models. If, for a 
specific biological population, the logistic growth model failed to hold, well, that model 
simply has to be replaced with a different one, an event which would not shake the 
scientific foundation of anything. The same Is true with the consumer arrivals model, 

Another kind of eplstemologlcal position Is held by plane map projection models of 
(segments of) the surface of the globe. Owing principally mathematical reasons, such 
models can never reflect all geometrical features of the globe, let alone the planet Eurth. 
However for a given projection we are able to tell In exact terms how an area of the 
sphere deviates from Its projected picture. Still another situation Is encountered In 
financing. Though It Is perfectly possible to model correctly and exactly the amortisation 
of an annuity loan In nominal terms - because the concepts Involved have already been 
given a definite mathematical form - the situation changes If we want to model the 
amortisation In real terms, where inflation Is Involved, By using different Inflation 
assumptions It Is possible to model different scenarios to approximate the real course of 
events. 

Numerous examples could be given In the same vein, In fact, every model may 
contribute to Illustrate the points made here. 

For all three educational levels I claim It to be Important that students acquire know-
ledge of the described variation In eplstemologlcal status of mathematical models. Such 
knowledge (which belongs to the scope of aspect (la)) should be based on a number of 
characteristic model cases, different from level to level. Another difference between the 
educational levels may consist In a varying emphasis on the four eplstemologlcal facets. 
While at school level, and In the education of mathematics professionals, particular 
attention would probably be paid to the source of model construction and to the 
statements ptoduced by models, the verWcatlonal status of models In relation to their 
purposes Is likely to be In the focus of attention in the education of users of mathematics 
in extra-mathematical professions. 
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CONCLUDING REMARKS 

In recent years much attention has been devoted to introducing applications and 
modelling in the theory and practice of mathematics curricula. Papers and books have 
been written, and conferences have been held. Experimental educational programmes 
have been devised and some carried out, Teaching materials have been developed. Ideas, 
materials and opinions have been exchanged. In spite of the fact that alt this has taken 
place at the frontier of mathematics education in theory and in practice, rather than in 
common day-to-day mathematics teaching, I think it is fair to speak of a successful 
movement of applications and modelling influencing mathematics education at all levels 
pretty strongly. It is not unusual with movements in progress that more attention is paid 
to the promotion of ideas and messages than to analytical reflection. In my opinion, the 
applications and modelling movement has reached a stage where a foundation for it to 
relation to mathematics education is needed. It is far from being claimed that such a 
foundation is provided by the present chapter. It has been possible, here, only to sketch 
elements of an analysis. One point deserves to be emphasised: the aims and tasks of 
applications and modelling in mathematics curricula should be viewed as forming part of 
the aims and tasks of mathematics education, which in turn form part of the aims and 
tasks of education as preparing its receivers to live and act in society. 

Looked upon from an appropriately distant point of view, the ultimate raisnn d'etre 
of exercising mathematics and mathematics education at a large scale in society is that 
mathematics is important in the pursuit of extra-mathematical purposes, brought about 
through its application to other areas. Therefore, no main level of mathematics education 
should be devoid of an applicational perspective. So, it was concluded in the preceding 
sections that basically the same arguments for including applications and modelling 
studies in the mathematics curriculum are valid for any educational level, from school to 
university mathematics, and that the same aspects of applications and modelling ought 
to be dealt with at all levels. What varies between the levels, and between different 
programmes, is the way in which these aspects are realised. 

Models and modelling may be made the objects of study, teaching and activity in a 
multitude of ways. In conclusion one thing should be kept in mind: models are designed 
to model something not to be confused with something unique. For a true perspective 
on applications and modelling to be generated in mathematics education, at whatever 
level, not only the mathematical components need proper attention. Extra-mathematical 
substance has to be taken seriously too. Certainly, artificial applications and modelling 
situations may possess great educational value, but sometimes mathematics education 
must confront students with the exciting and mysterious meeting points between 
mathematics and reality, so difficult but so important to understand. 
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l should like to begin by quoting a story which has just been published in The Newtonian 
Revolution in Science and Its Intellectual Significance, by 1. Bernard Cohen, Emeritus 
Professor of the History of Science at Harvard University. It was published in 1987 by the 
Bumdy Library in Norwalk, Connecticut. What follows is partly paraphrase and mostly 
direct quotation. 

Prof. Cohen begins his paper with this anecdote attributed to an earlier professor of 
the History of Science at Harvard, Professor Joseph Lovering. Professor Lovering was 

. . . famous a hundred or more years ago for a lecture he gave all over New England. 
The subject of the lecture was the end of the world. With great enthusiasm he used to 
detail how a distant astronomical body would come closer and closer to Earth. During 
this process our Earth and its atmosphere would get hotter and hotter and, eventually, 
all life would end as a result of the intense heat. 

While his audience was still reeling under the impact of this spectre of death by fire 
and heat, he would turn to them and say: 'Now let us discuss the probability of this 
event.' According to the theories of the great Laplace, he would conclude, the 
probability of such an event is so small that it may be considered impossible. 

In a day when there were no television sets, no radios, and no motion pictures, 
people found this lecture a thrilling experience. There was always a good attendance 
when Joseph Lovering gave his presentation. He really deserved his fee of (perhaps) 
forty dollars. 

Once a group of Harvard alumni asked Lovering if he would come to Plymouth to 
give his famous lecture. Unfortunately, they could only pay twenty dollars; Lovering 
told them his fee was forty and he wouldn't come for less. The alumni group appealed 
to President Sparks of Harvard. They said they didn't think this was the proper 
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attitude for a member of the faculty. The president intervened and. in the course of 
time, the professor went to Plymouth and gave his famous lecture. 

. .Lovering was never in better form. He became more and more eloquent as he 
described how the temperature of the earth became hotter and hotter. After he had 
described the heat-death, with the earth all in flames, he concluded abruptly with a 
'thank you', and sat down. 

The president of the Harvard almuni group was very uneasy as he looked at the 
disturbed faces in the audience. He jumped up and said. 'Prof. Lovering, you can't 
do this to us! Don't you usually talk to us about probability? Can't you give us some 
assurance that this won't happen to us?' Whereupon Lovering, being a good Yankee, 
replied, 'Not for twenty dollars." 

Now let me spoil this story, and take all the fun out of it by analysing some of its 
implications. First of all, it reminds us of the fact that classical applied mathematics, that 
is mathematics applied to classical physics, is only a part of the story. Probability, and 
other branches of mathematics applied to human society, is another part of the story. 
Both are essential aspects of applications of mathematics, and of model-building. You 
only have to look at the diversity of the program of this conference to see how far we 
have come. We have mathematics applied to physics and chemistry and biology and 
communication theory, to geology and epidemiology and oil exploration: we have 
mathematics applied to strategy and speech and risk and optimal search and sport and 
interest rates and automobile traffic and the Suez Canal - and war and peace! We have 
applications of everything from ancient geometry to fractals. 

If you want to explore further the tremendous variety of mathematics which is 
applied, and the variety of fields to which it is applied, you need look no further than 
the work at the University of Kassel by Professor Blum and his colleagues. Their biblio
graphy, for example, is a model of what can be done in this field. 

Let me come back to the story. The audience at Plymouth were graduates of Harvard 
University who paid to hear a lecture on science. A hundred years ago, they had not 
learned any probability at Harvard. (Forty years ago, I didn't learn any probability at 
Harvard either!) So they didn't know how to think about very low probability events of 
very high risk. There are nowadays, many more low-probability high-risk potential 
events for us to worry about than there used to be. All students should now learn 
probability - and not just for that reason. They need to begin the study of probability 
in elementary school, and to continue it for many years afterwards. Pioneering work on 
the early introduction of probability was done in Scandinavia in the 1960s, in Hungary, 
and by Arthur Engel here in Germany. 

The story also reminds us, rather superficially 1 admit, of mathematical economics, 
and thus of mathematics applied to the social sciences more generally. There is not as 
much at this meeting on this area as one might perhaps have expected - but you can't 
have everything. Mathematical models in economics, in individual and group behaviour, 
and in political science, are also terribly interesting. 

Why do we teach mathematics anyway? Professor Blum reminded us of some of the 
reasons when he opened this conference, and I shall summarise them in my own way 
once again. I think there are four major purposes inherent in the teaching of 
mathematics: 
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( 1 ) mathematics for practical everyday life: 
(2) mathematics for intelligent citizenship, and for the decisions that must he made in 

life but not every day: 
(3) the mathematics needed for your profession, and for the preparation for that 

profession: 
(4) mathematics as part of overall human culture. 

Mathematics for practical everyday hie is traditionally the responsibility of the 
elementary school. Mathematics for intelligent citizenship - and we shall discuss this 
considerably more in what follows - should be the responsibility of the secondary 
school. At least, that is my opinion. Mathematics for your profession is the responsibility 
of tertiary' education, at least for those professions which require advanced education; 
otherwise it is also a responsibility of the secondary level. To teach mathematics as a part 
of overall human culture is. as far as I can see, nobody's specific assignment. Professor 
Steen likes to argue that this should be the responsibility of graduate school - to prepare 
at least some highly educated people outside of mathematics to be able to understand to 
some extent what a new development in mathematics might mean. He points out that 
mathematics is almost a third culture, in the sense of CP. Snow's two cultures: humanism 
is to science as science is to mathematics! In other words, new results in mathematics are 
yet another order of magnitude more difficult to appreciate than new results in science, 
and scientists sometimes find it as difficult to understand new mathematics as humanists 
find it to understand new science. 

Twenty years ago, there was a conference in Utrecht, organised by Professor 
Freudenthal. entitled How to Teach Mathematics so as to be Useful. What is being said at 
this meeting in Kassel that could not have been said in 1%7 in Utrecht? Why do we need 
to keep having meetings on mathematics education? Can you imagine such a question 
being asked about an International Congress of Mathematicians? It would be totally 
absurd if a meeting is devoted exclusively to mathematics research - every paper would 
contain something brand new, in addition (we hope) to some historical background and 
motivation for the problem under consideration. However, at meetings devoted to 
education, you may well hear a paper that could have been given twenty years earlier. 
What is it that changes in mathematics education, what makes new work important and 
necessary? I should like to mention three major influences: technology, applications, and 
mathematics itself. All three keep changing, and this fact above all others continually 
forces us to rethink what we teach and how we teach it. Our knowledge about how 
children learn, about the psychology of teaching and learning, also keeps changing, but 
that is not the subject of this talk. We do, however, discuss the teaching of modelling. 

Technology, its continual change, and the effect of this change on mathematics 
education, are an essential part of the current scene, and will play an important role in 
what we have to say. It would take us too far afield, however, to concentrate on this 
issue. For some observations, see, for example. Pollack (1986). 

The continual change in mathematics is also worthy of much more emphasis that we 
shall gjve it. Think, however, of some of the big events, the kind that make newspaper 
headlines, in mathematics in recent years - since the middle 1970s, let us say. The four-
colour problem was solved, with the proof using the computer in an essential way. The 
stable inversion of the Radon Transform was accomplished; it is better known as 
computer assisted tomography, and earned the Nobel Prize. CAT scans have been 
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followed by NMR and PET, which Involve mathematical pt<>hliM.T , i . t i similar spirit. 
Linear programming made the headlines, first for the proof by i u n that the problem 
Is Indeed polynomial, and then for the Ideas of Karmatkar that enable us to solve 
problems an order of magnitude larger than could be considered previously. Phenomenal 
new advunceB In knot theory are being applied to DNA. Public key cryptography was 
Invented, and complexity theory and number theory were used to show that It was 
possible. Much more recently, even more ingenious number theory was used to break one 
of the methods of public key cryptography that had become a favorite among 
practitioners, Finite simple groups were finally classified completely there are 
important relations to coding theory there. 

Those are some of the big events In mathematics in recent times, and we notice how 
strong the applied flavor Is to almost all of these, liven the four-colour problem has long 
been known to have strong relations to switching theory, However the whole body of 
mathematics mirrors some of the key features of the headline-making examples we have 
mentioned: mathematics has become much more algorithmic, so the question of how 
you actually carry out a particular process has become more significant, The nature of 
proof, and of certainty more generally, has expanded not without controversy, as can 
be seen from the debute on the four-colour theorem. Computer graphics has come to play 
an enormous role In both research and teaching. Above all, we have rediscovered the 
fact that mathematics Is an experimental science, und we are admitting that to our 
students, for the first time In ntuny decades. All of these changes, as we can see, are 
closely tied to both applications and technology, but they are Important changes in 
mathematics Itself, 

Let us now return more specifically to applications and to modelling, which ure the 
focus for the rest of my thoughts at this time. I come to this meeting with a mixture of 
backgrounds. I worked for 35 years In Industry, both as a mathematical researcher and as 
a leader of mathematical research in the telephone Industry In the US. What did I see as 
the most Important ureas of research In the mathematical sciences in Industry - at least 
the communications Industry? Here are some of the outstanding areas: optimisation; 
exploratory data analysis; discrete mathematics i.e. graph theory, combinatorics, 
Information theory, and coding; algorithms for example computational complexity, 
and the theory and practice of distributed computing; systems analysis and systems 
thinking; computer communication, especially mixed voice and data and video traffic; 
artificial Intelligence, Including the problems of human Interaction with machines In an 
Intelligent way. 

These are the areus which were most Important for mathematical research In the 
telephone Industry In recent years, What were the areas which arose most frequently lit 
the advice we gave those of the approximately one million employees of the Bell System 
(before divestiture) who came to us for help? We probably got more questions Involving 
data analysis and statistics than any other single field with discrete mathematics a close 
second. 

Probability, especially Involving truffle theory, was often called upon. So were other 
parts of operations research, communication theory, and algorithms, These are some of 
the main ureas which employees of the Bell System needed most - and which very few 
of them had ever hud u chance to learn! These ureas are required for 10 many 
occupations, and so many applications, that are Important for Industry. 

It Is only natural that there should be u very great overlap between the areas of 
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mathematics most important for icli in industry, and the areas not in their 
educational background which w c u most useful to the totality of employees. The 
amazing fact is that these same areas come up in yet a third line of reasoning, one which 
we began earlier in this presentation and to which we now need to return. We said that 
one of the major purposes of education in mathematics is to provide the mathematics 
needed for intelligent citizenship and for |ier$nnal decision-making. We also wish to define 
this as the major function of mathematics in the secondary school. What is wrong with 
the population's intelligent citizenship and decision-making now? Why does anything 
need to be changed? Here are some troubling observations. 

People don't seem to be able to handle uncertain situations - those which are 
inherently stochastic in nature. For example, as we saw at the beginning of this 
presentation, low-probability but high-risk events are very difficult for many people to 
consider in a rational way. People have difficulty reasoning from data. In fact they are 
afraid of data, and will tolerate outrageously misleading grapliics in popular and even 
technical presentations. They cannot plan intelligently - never mind optimise! The 
;iotion ii lien you consider alternatives, you must think about your optimisation 
criterion is indeed difficult for most jvmhIi'. On a somewhat simpler level, but still dealing 
with planning, how many people i : i alternative life insurance plans, financial 
possibilities, or interest rate; ' A: s the inabilii lunk about systems. 
People a' look for simple vjIih > ore monev at the problem', 'twice as 
much is twi v as good', 'shoot". Tli .g to l> linearly, there are no 
u n f o r e s e e n luences, n«> ins!. oedback loops and no overloads. They 
don't think discretely or algorithm all, they do not know that it is possible 
to model situations m the real woild in a structural, quantitative, analytic, that is 

ematical way. 
wc art- dismissing tlu- importance of including probability and data analysis, planning 

a> optimisation, modern liiiantv. di.cicte and algorithmic mathematics, and even 
s> sioms simulation In the secondary school curriculum. Above all of those looms the noed 
(or learning something about modelling, and to have some experience with It, It would be 
well for all countries to think about these things: What is most important for all students, 
for all future citizens, to know? This meeting will provide much food for thought for 
these endeavours. 
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On revising the Meran directions in 1922, the Deutscher Ausschuss fur den 
mathematischen und naturwissenschaftlichen Untemcht (DAMNU) pleaded lor an even 
greater emphasis on the significance of mathematics to the real world. In 1923 Zuhlke 
published liis book Politische Mathematik and stressed therein the civic duty for applied 
mathematics teaching fwlu'ch seems to have been self-evident to the reformers at that 
time); in 1924 diere appeared Lietzmann's (Klein's successor as the head of the 
reformatory movement) Methodik der angewandteii Mathematik, the third and last part 
of his comprehensive Methodik des mathematischen Unterrichts. Thus we should be able 
to assume that applications had become definitely and sensibly an integral part of 
mathematics education. 

Tilings went the other way, however. Already in 1925 the directions for the Prussian 
Gymnasien (the so-called Rkhertschc Richtlinien) contain weakening arguments: in the 
foreword there are to be found several warnings not to neglect the true(!) arithmetic 
when dealing with applications, and in the curriculum itself there are fewer suggestions 
for applications than in the Damnu directions. 

Further on there is much evidence that at that time teachers actually took up only a 
very small proportion of these suggestions. 

Lietzmann himself seems to retract some of his former statements (whose character 
had been a land of compromise between formative and utilitarian goals) (Kaiser— 
Messmer, 1986, pp. 36ff). In the 1953 edition of the first part of his Methodik he finally 
states 'that real world examples are not to be dealt with for their own sake but for the 
sake of mathematics". 

In general we can say that, after 1945, on the one hand the tradition of the Meran 
reform was continued and on the other hand that component wliich put more emphasis 
on the relation to the real world was neglected. This new displacement of applied 
mathematics teaching in the Gymnasium (after the one in the nineteenth century) 
depends on several reasons including the following. 

— Educators are disappointed about the perversion of applied mathematics teaching 
which had been part of the Nazi educational policy. 

- The weekly number of lessons on mathematics in schools has continuously dropped 
during the twentieth century. 

- In lower classes mathematical content is often taught merely as a provision for its 
use in higher classes. 

— The curricula of the various school subjects are harmonised in an insufficient manner. 

However the main reasons are as follows. 
— Mathematics teachers at the Gymnasium see themselves as guardians of the science of 

mathematics (Schefer, 1969), but not of its real world applications. 
- The educational idea of the Gymnasium is still adjusted to the neo-humanistic idea 

of man, neglecting social manners (Schefer, 1969) and optimistically trusting in the 
effect of formative goals and in an automatic transfer to the world outside school. 

1.2 Volksschule (and Hauptschule as successor) 
Of course, things were much easier for this type of school. It has never been tied to 
sciences or even to their systems (Flitner, 1954). Pestalozzi already indicated the main 
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principle which has shaped the Volksschule until now (in particular by means of the so-
called Reformpadagogiky the principle of Lebensnahe (close connection to real life). It 
is the starting point for the justification and development of the so-called working school 
(Arbeitsschule), school of native region (//eimatsWiule), school of true life, of project-
work and various other ways of dealing with content belonging to several subjects from 
inside and outside school (Gesumt-, Ganzheils-, Epochenunterricht). These different 
approaches include partially different aspects and sometimes contested interpretations 
of what 'close connection to real life" should mean: rooted in the child's life vs. 
preparation for vocational life; practical proficiency vs. artistic creativity; intuition vs. 
analysis and so on. However, they all have in common the attempt to bridge the gab 
between school and the real world. In the teaching of arithmetic these ideas produced a 
remarkable phenomenon: the Sachrechnen (practical applied arithmetic). This stands for 
solving simple problems of everyday life by using simple mathematical methods. In the 
Volksschule this Sachrechnen was definitely the culmination of all arithmetic endeavours, 
whereas in the Gymnasium the corresponding biirgerliches Rechien (middle-class 
commercial arithmetic) was treated as a staging post, to be passed through necessarily, 
and soon to be left behind on the way to more essential insights. 

The undisputed basic principle of arithmetic teaching in the Volksschule read like this: 
'AH insight and all training starts with genuine real world situations and leads back to 
them.' Over several decades a methodology was constructed for the customary ways of 
calculation: with percentage, interest, ratios, mixture ratios, and so on. The culmination 
and conclusion of this principle takes place in Oehl's book, Rechenunterricht in der 
Hauptschule 1 9 6 5 , described by him in Fig. 5 .1 . This tradition has encouraged some 
important insights which we do not want to miss now. 

Consolidated 
concept 

Real-world Proficiency 
si tuat ion in ar i thmetic 

fig. 5.1 

- The differentiation between skills (Fertigkeit) and proficiency (Fahigkeit: being able 
to use one's skills in real world situations effectively). 

- The differentiation between the level of the real-world situation and the level of 
calculation, and the necessity for changing the level twice when solving a real-life 
problem. 

- The right of the real-life situation as an object of analysis on its own. 
- The need for genuine real-world problems instead of mere word problems. 
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There are also two points of criticism: 
f)) Educators weren't able to withstand the temptation to postulate too quickly (a) 

tire way of life the students have now and in the future, (b) the kinds and places of 
situations which arise in their lives and can be easily grasped by number, measure and 
shape, and (c) the methods for teaching the students in advance how to deal with such 
situations. 

These postulates have been questionable even in times where tilings did not change 
noticeably during one lifetime, because their actual function was to support the 
stabilisation of the social strata with their different levels of the quality of life. In our far 
more complex and fast-living world these postulates would be downright precarious. In 
the middle of our century, it became clear that these mathematical (and sub-
mathematical) methods taught in the Volksschule were insufficient in their essence and 
extension (Winter 1972; Meyer-Drawe, 1981). 

(2) Since the days of Pestalozzi and ilerbart an important part of the discussion about 
the education in the Volksschule consisted in a search for the 'right' method, the 'sure' 
way. the 'normal' procedure. This dominance of methodology has impoverished applied 
mathematics teaching in two ways. 

(i) Applications always appear in the same style and with the same relativised, even 
apportioned, meaning. There is no place for a method of teaching which has phases 
where relations to the real world are constitutional and essential, and phases where 
these relations do not play any role. 

(ii) Using application as a methodological aid promotes the embarassing qualities 

simple = concrete = intuitively clear = close to everyday life. 

In order to maintain this fiction, one has to avoid complex applications and restrict 
oneself to the retranslafion of word problems, which have been produced by merely 
wording arithmetical relations beforehand. 

2. NEW APPROACHES 

The existing state was then influenced by two new trends, one following about ten years 
after the other. 

2.1 New Math 
Today it is nearly forgotten that New Math emerged for solid economical reasons. The 
consequence of the Sputnik shock in 1957 in the western world was the fear of falling 
behind the eastern world in the political and economical sphere, connected with the hope 
of preventing this decline by a modernisation of the educational system, mainly in the 
mathematical-scientific field, and particularly by adjusting the teaching to the recent 
progress in the corresponding sciences. In Europe from about 1960 the OECD started 
work by organising a lot of conferences and releasing numerous publications. In our 
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discipline there was the hope that after the Bourbalci reform for the first time the funda
mental ideas of mathematics would become accessible in an elementary way. Reformers 
in the schools were fascinated by the possibilities which seemed to arise from this 
development. Their work at the famous conceptual frame 'set-function-structure' seemed 
to be justified by results from cognitive psychology (Piaget) and produced some success 
(Dienes), which even surprised the (few) sceptics. That is why soon Real- and 
Hauptschule and primary schools in particular were included in this work. 

However, it soon became clear that this approach, originally well founded in practice, 
altered in the course of the 1960s: the means (structural clearing up, logical foundation, 
lingual exactification) became the ends. 

The place of genuine applications of new content and method was taken more and 
more by artificial constructions (e.g. the logic blocks) whose purpose was just to serve as 
models (in the mathematical sense) for the structures to be acquired. Meschkowskd (1965, 
p. 181) stresses that a direct help of mathematics education for the practice is not 
necessary: 'Nothing is more practical than a good theory.' 

In the curricula, this corresponds to the fact that applications appear only in the 
forewords. The discrepancy between the original intuitions and concrete contents shows 
very clearly, for example, in the Nurnberger Rahmenplan by the MNU (Association for 
the Support of Mathematics and Science Teaching) in 1965 and in the KMK-Richtlinien 
(Directions by the Conference of Ministers of Education (each of the 11 states of the 
FRG has one)) for the modernisation of mathematics education in 1968, which were 
strongly influenced by the Nurnberger Rahmenplan. In the Richtlinien one can read 
again and again about the necessity to grasp the real world with the help of mathematics, 
to solve concrete problems, and so on - arguments for the justification of that 
modernisation. However, in the directions themselves one can find almost no hint; the 
contents for Real- and Hauptschule originate from the instructions for the Gymnasium by 
merely omitting parts. 

From about 1970 there has been sporadic, and since 1975, a broad criticism against 
New Math - against several of its goals themselves and against the perversion of others in 
teacher education, school textbooks and practical teaching. Meanwhile this approach 
has disappeared to a large extent, and one can state that New Math certainly did not 
promote applied mathematics teaching. 

7.2 Application-oriented mathematics 
In close connection to this criticism against New Math, educators started to consider 
questions such as how to deal appropriately with the relation between mathematics 
teaching and the real world, and how to teach the fundamental goal •ability to apply 
mathematics', questions which were still open. These considerations emerged worldwide 
and influenced the discussions in the FRG (as New Math had done previously). The 
gradual advance of stochastics (statistics) went well with this trend; at first it penetrated 
the upper secondary level, where it could still be taught as a mathematical theory, but 
then, from about 1975, also the lower secondary level, where stress had to be laid on 
reasonable action and behaviour in stochastic situations (Engel, 1976). 

From then until the present many concrete examples for applied mathematics teaching 
have been introduced, most of which have been tested in the classroom (e.g. Becker, 
1979; Becker, 1983; Schmidt, 1984; Mued (Collection of Mathematics Lessons)). Also 
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fundamental considerations on the intentions, possibilities and limitation of such a kind 
of teaching, and its compatibility with other fundamental goals have been developed (e.g. 
Burscheid, 1980. Weber. 1980: Beck, 1982: Blum, 1985). During the times of New Math 
pedagogical activities of this kind and quality had been rather rare. 

Of course, one can find different positions in this new and continuing discussion. In 
her recently published thesis Kaiser-Messmer gives a detailed and profound insight into 
the history and the present state of applied mathematics teaching (Kaiser-Messmer, 
1986). She distinguishes between three main lines - emancipatory', science-oriented and 
integrative - but she also points out that these lines are moving towards each other. In 
fact, today we see mainly what they have in common compared to New Math and we see 
the progress compared to historical approaches. I now analyse this in more detail. 

(a) At first there is the conviction that solving an extra-mathematical problem by 
mathematical means is equivalent to constructing a mathematical model which, further
more, is not inherent in the original problem situation, but has to be added to it. 

For example, the price for 5 kg of grapes is not necessarily five times the price for 
I kg of these grapes, but depends on whether the grocer decided to sell his grapes 
'proportionality'. The progression from the price for 1 kg to that for 5 kg is part of the 
model. This was remarked at first by Kitsch in his Analyse der sogenannten Schlussrech-
imng in 1969. Whereas Oehl still asserted that the student has to discover the 
mathematical relations hidden in the problem situation, we nowadays face this 
pedagogical Platonism in an extremely critical way. We tend to characterise man as a 
modelling being (Stachowiak. 1973). 

- When we proceed from objects and their connections in the real world to 
mathematical concepts and their relations we work with images of this real world. 

- These images are reductions of the original objects covering only the relevant 
characteristics. 

- This relevance is a feature of the subject who constructs the model. 

Of course, this threefold relativisation not only includes but even requires the existence 
of some trans-subjective standard models. As a rule these are models which come into 
question in many simple situations, for example the basic foundations (which are taught 
at the lower secondary level, but not with due regard to this aspect). 

(b) Application strictly speaking (i.e. using a model already in existence) and 
mathematising (developing a useful model) must necessarily be a process. A rather rough 
model for this process, concentrating on widely accepted components, is shown in 
Fig. 5.2. 

Let us consider an example for this control circuit. The situation: an election for a 
parliament has taken place. We know the distribution of the votes to the parties and, of 
course, the total number of seats. The problem: how to allot the seats reasonably to the 
parties? We first use the standard model proportionality and therefore have to distribute 
the seats according to the ratios of votes. This simple innermathematical 'solution" shows 
to be useless when retranslated in the situation because the calculated numbers of seats -
as a rule - are no integers. We have to improve the model. Thus we come to the 
competing and not at all equivalent procedures after Hare and D'Hondt. Which is the 
more reasonable one? To answer this question, one needs not only mathematical but 
also political criteria. 



Ch. 5] Applied mathematics instruction 43 

Problem Solution 
I 

Deducing 

Model 

Mathematics 

— — Modelling 

Real-world 

Situation 

| Consequences 

Interpreting 

J 
Information 

I 
Validating 

Fig. 5.2 

Of course, it depends on the kind and on the complexity of the given situation, how 
often we have to go round the circuit and how important are its single steps and stations. 
However we should never neglect to validate the information we have got by modelling 
(as it is usually done in classroom). The students must learn to use non-mathematical 
arguments in this phase, too.They should also be confronted with problems to the 
solution of which mathematics can only contribute - more or less. 

(c) We are convinced of the need to make those processes explicit for the students and 
that this must be done by passing (and repassing) around the control circuit of Fig. 5.2 
knowingly. The arguments for this are (among others): 

— to instruct the students in solving those tasks completely; 
- to support a comprehensive understanding of the situation, a sensible choice (or 

construction) and use of a model, and a well-weighed decision; 
_ to prepare the students for applications outside and after school. 

From the present point of view, in order to treat practical problems reasonably, one has 
to possess a well-founded body of relevant knowledge about the contents of a situation as 
well as about the necessary mathematical methods, or one has to acquire it 
spontaneously. 
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3. THE TEACHING OF MATHEMATICS 

3.1 The situation 
Was the wave of New Math followed by the wave of applied mathematics teaching? If yes, 
then this new wave, unlike the first one, did not run through the schools, but was 
restricted to the pedagogical discussion and the work of some motivated teachers. In the 
Hauptschule calculations with measures and Sachrechnen are still prevalent, and in the 
Realschule and the Gymnasium one goes on retranslating word problems into 
mathematical relations. We have to ask anew which are the causes for the small effects in 
practical applied mathematics teaching despite all our sublime goals and various efforts? 

The following reasons (which we add to the reasons sketched in 1.1 and 1.2) seem to 
be independent of the type of school: 

(a) Applied mathematics teaching is very ambitious - for teachers and students and 
nowadays even more (and not at all motivating by itself from the first). 

(b) The possibilities for helping the teachers from outside (directions, books, and so 
on) are limited. The ways in which genuine real world problems are posed, treated 
and discussed in the classroom depend strongly on the particular conditions of each 
class. 

(c) Unlike mathematical problems, real life problems are not perfect. What is given, 
what is wanted, which means are permitted, need not be clear, but can be a part of 
the problem, even its cause. Thus the arguments and answers are subjective, 
ambiguous and provisional - compared with innermathematical solutions. Teachers 
obviously prefer the latter ones (especially when they dominate at university as is 
the case). 

(d) The organisation of the educational system on the whole and of the teaching units 
in particular, especially the so-called Aufgabendidaktik (adjusting mathematics 
teaching to solving many small problems (Lenne, 1969, pp. 50ff)), produces an 
unfavourable frame for applied mathematics teaching. 

3.2 Possible changes 
If one is convinced that applications must be a necessary component of any mathematics 
education, so that 

- students can move confidently in the fundamental fields of everyday life, where 
simple mathematical methods can help (utilitarian goal) 

- they are equipped with the long-term ability to behave reasonably in complex 
situations as well (formative goal) 

- they eventually get an appropriate view about the essence, potential and limits of 
mathematical methods (methodological goal) 

then the question arises how to effect a distinct change in the practice of teaching. 
This question is - of course - directed at the mathematics educators, the didacticians. 

They are not relieved from their responsibility by merely having propagated, 
substantiated, analysed and exemplified applied mathematics teaching for years. They 
have to come more into contact with the teachers in the schools; they should plan, carry 
out and evaluate appropriate short- and long-term projects together with them (an 



Ch.5] Applied mathematics instruction 45 

example for such a cooperation is given by Jager & Schupp. 1983). However the question 
is directed above all at the mathematics teachers themselves. What can they do now and 
under the given conditions? 

The following ideas are not meant to be recipes, but hints for more competency in 
mathematics application, which can be used immediately. Spectacular suggestions such as 
project-work or team-teaching are not included, because 1 think ideas for everyday 
teaching are more likely to be realised. 

(a) Those parts of the curriculum should be extended where applications are 
constitutive (see Kaiser et a!., 1982) at the expense of other sections which merely 
provide techniques for situations still (or never) to come. I mention above all 
stochastics, but also parts of geometry (e.g. shape, genesis, function and con
struction of everyday objects, measuring of inaccessible lines and angles) and of 
algebra (e.g. empirical functions, optimisations, kinds of growth). 

(b) It must be much clearer that central mathematical concepts of the lower secondary 
level are also good as standard models. This holds in particular for the concept of 
function: y = c • x and_v = c : x and Schlussrechnung (calculation with ratios), 
v = a • x + b and costs for many services, quadratic functions and uniformly 
accelerated movement, exponential function and geometrical growth, trigono
metrical functions and periodical processes, and 'hidden' functions such as formulas 
for areas in geometry, the mean in statistics, the uniform distribution in probability 
theory. 

(c) Students' everyday life and their fields of activity as well as other school subjects 
must be taken into consideration in an appropriate way. This does not exclude the 
preference of areas In which the teacher has specific competencies and (or) in which 
the students are especially interested. 

(d) Students should regard themselves as 'wanderers between two worlds' reality and 
mathematics, and appreciate the Importance of knowledge and understanding in 
both worlds in order to cope with real-world problems. 

(e) For this appreciation It Is necessary deliberately to change the viewpoint during the 
process of application, not only in the ordinary manner, applying a piece of 
mathematics to a well-prepared piece of reality, but also by noticing that there may 
be several fitting models for the same situation, that they now have to combine 
parts of mathematics rather isolated till now, that they first have to construct the 
mathematical means which are helpful In the given situation, and so on. 

(0 There seem to be no insurmountable difficulties in introducing the modelling 
process according to Fig, 5,2 rather early. The appertaining steps may be 
Introduced as reactions to heuristlcal questions such as 'Did you really answer the 
question?', 'Is this a fitting answer (a fitting question!)?', 'Can we improve the 
solution?', 'What don't we know yet?' (see Schonbeck & Schupp 1976). 

(g) A deeper understanding of the relations between situation and model yet requires 
some maturity and the ability to think in relative and evaluating terms, which the 
students acquire only by the end of lower secondary level. Thus the teacher should 
not plan special units for the reflection of these relations in advance, but be pre
pared when the corresponding questions emerge by themselves while the students 
discuss a knotty problem. 
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(h) At this moment I am not able to give a definite s ta tement about the role of the 
compute r In our field. As a tool It offers considerable help, hut its con t r ibu t ions t o 
the difficult phases of the control circuit are rather modes t . 

4. CONCLUSION 

If one fights for applied mathematics teaching, one can actually promise only b lood , 
sweat and tears" and, moreover, must already fear one more wave ( the c o m p u t e r wave) 
which will be supported as widely and extensively as that first. 

However. 1 am not wi thout hope. Relation to the real world Is no t a wave, bu t a 
permanent and Indisputable claim, with which al present - for tunate ly - more and more 
teachers feel involved, 
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6 
Mathematics and Physics: Where is the 
Difference? 
R . B k o u c h e 
hem de Lille, France 

SUMMARY 

Now, mathematics and physics appear as two distinct domains of knowledge. However if 
these two domains are actually distinct, the frontier that separates them is blurred; on the 
one hand, physics played (and still plays) a great role in the development of mathematical 
concepts and theories, on the other hand, the place of mathematics is close to the 
elaboration of physical concepts, and more generally of physical thinking. 

Mathematical physics (of which elementary geometry is a part) is both mathematics 
and physics and it is not easy to define the part of each of these two domains in the 
building of mathematical physics. An example are the Elements of Euclid, the first model 
of a mathematised physical theory. 

This consideration poses the problem of teaching of these two domains of science and 
their relations; also it is necessary that mathematics teachers speak about physics and 
physics teachers speak mathematics; particularly in the beginning of scientific teaching. 1 
think the two domains must not be separated. 

La distinction entre i'abstrait et I 'experimental n'est que de tendances, non d'essence. 
Ferdinand Gonseth, Les Fondements des Mathematiques 

Nowadays, mathematics and physics appear to be two distinct domains of knowledge. 
However if these domains are indeed distinct, the frontier that separates them is blurred; 
on the one hand, physics has played (and still plays) a fruitful role in the development of 
mathematical concepts and theories, whde, on the other hand, mathematics are not only 
a tool for physicists but are also very close to the development of physical concepts and. 
even, of physical thinking. 

Unfortunately this close relationship is not always emphasised in teaching where 
mathematics is proposed to physicists exclusively as a tool and physics is proposed to 
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1. DERIVATIVES AND SPEEDS 

What does the definition of speed as the derivative of displacement with respect to time 
mean? Is it merely a computational procedure as a high school student once told me, a 
conventional procedure to solve problems? 

If a student has not understood the concept or derivative (even if he knows how to 
compute it), can he understand this definition of speed? 

The problem is not to give a good definition of speed of derivative. Derivative and 
speed are two very closely related concepts and the understanding of any one is a step 
towards understanding the odier; the problem is less one of giving a formal definition 
than of seeing how we use this idea in problems. Without such problems, the formal 
definition is meaningless. 

Historically the concept of derivative was born in the study of motion and only later 
did it achieve independence from mechanics. Nevertheless this definition from motion 
not only remains relevant to mechanics but it also permits us to use meaningful 
mechanical metaphors in other problems where derivatives are used, such as the study of 
variations of functions of one (not necessarily real) variable, the study and the 
construction of curves (where the tangent vector is like a speed and the second tangent 
vector is like an acceleration), and so on. 

2. VECTOR CALCULUS, VECTOR ANALYSIS AND LINEAR ALGEBRA 

In France, with the introduction of the new mathematics introduced in teaching in 1970, 
the notion of vector disappeared behind the notions of vector space and affine structure. 
As a result of this, we encountered many difficulties in the teaching of physics, 
particularly in the study of speed and force, where using the classical notion of oriented 
segment is required. 

Vectors (defined as oriented segments) are a good representation for speeds and forces, 
but there is no need to know vector theory in order to represent speeds and forces; on the 
contrary vector calculus is an a posteriori means of unifying these representations, vector 
calculus is a means of obtaining simultaneously the properties of speeds and forces (thus 
Appell introduced a preliminary chapter on vectors in his Traite de Mecanique rationnelle 
(1893)). However vector calculus is not just a tool we use in mechanics, it is very close to 
the formulation of mechanics; calculus on speeds and calculus of forces are already a 
vector calculus, but a calculus on mechanical objects, a calculus of which the vector 
calculus is an abstract representation. 

Of course, vector calculus is not reduced to its mechanical meaning, but the under
standing of vector calculus and its use in mechanics depends upon this unification of 
mechanical concepts (speeds, forces) and geometrical concepts (oriented segments), and 

students of mathematics as a series of applications of mathematical theories. In this 
narrow perspective, the problem of the use of mathematics (mathematics as a service 
subject) becomes artificial; mathematics is deprived of its actual and historical connection 
with scientific practice. 

It is therefore necessary to identify die relationship between these two domains; a 
historical and epistemological approach leads to an awareness of this relationship and we 
must try to develop it in our teaching of mathematics and physics. 
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not upon an application of an abstract vector calculus to mechanics. It is remarkable that 
the same calculus is relevant for speeds and forces and also for translations, and remarking 
this contributes towards an understanding of the use of vector calculus. 

We encounter the same problem with the concepts of vector analysis (gradient, 
divergence, curl) which are close to field theory. The problem is less to define these 
concepts than to show how problems of mechanics, electricity or magnetism, lead to 
these concepts (for instance, fields and potentials, divergence and conservation laws). 

Thus vector analysis is not merely a tool for field theory, it is constructed within field 
theory; when vector-analysis becomes independent of field theory, it becomes a 
metaphoric language whose pertinence is based on its original physical meaning (such as 
the mathematical theory of potential). Thus, vector analysis is not a simple exercise in 
analysis; mathematical constructions and physical concepts must be understood 
simultaneously, each depending upon the other, each allowing the understanding of the 
other. 

Another problem is posed by linear algebra. Histories of linear algebra and vector 
calculus are different, the first time the two appeared together was in Calcolo geometrico 
by Giuseppe Peano in 1888, and later, in 1918, Hermann Weyl published Raum, Zeit, 
Materie (Space, Time, Matter) showing how linear algebra is used in geometry and in 
physics (Cousquer, Crowe). 

Vector calculus in elementary geometry and in elementary mechanics is independent 
of linear algebra, even though it will eventually become a mere chapter of linear algebra 
as Dieudonne argues Ln his A Igebre lineaire et Geometrie elementaire; on the contrary it is 
through the several situations where linearity appears, in geometry, in physics, in analysis, 
that linear algebra takes its meaning as a method for unifying different concepts. It is 
precisely because it is a method of unification that linear algebra is so powerful, but its 
power can only be understood if we know what concepts linear algebra unifies, concepts 
which are not, Ln themselves, concepts of linear algebra. 

3. ELEMENTARY GEOMETRY 

Geometry is both a part of mathematics and a part of physics. In his paper Geometrie 
und Erfahrung {Geometry and Experience) (1921), Albert Einstein explains the 
distinction between the mathematical geometry defined by an axiomatical structure and 
the practical geometry which is closed to the study of space and therefore is the oldest 
part of physics. However this distinction became meaningful only in the nineteenth 
century, after the discovery of non Euclidean geometry, the structural viewpoint with the 
introduction of group theory in geometry by Felix Klein in the Erlangen Programme, 
and the axiomatical construction of geometry by David Hilbert. Before this, there was 
only one geometry, the one what we call today elementary geometry in which the 
distinction between a mathematical part and a physical part is meaningless. This geometry 
is the science of spatial configurations that was presented by Euclid in the Elements; this 
geometry deals with the measurement of geometrical magnitudes (lengths, areas, volumes, 
angles) and it is based on the principle of equality by coincidence (fourth axiom in 
Heath's edition of the Elements) that states that 

Things which coincide with one another are equal 
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This principle is very close to the motion of solid bodies as explained by the French 
mathematician Jules Houel in his Essai critique sur les principles fondamentaux de la 
geometric elementaire (1867). By this principle, elementary geometry allows a 
development of classical mechanics of solid bodies which shows the pertinence of Euclid's 
geometry for a knowledge of the physical world (Enriques, Gonseth). 

However if geometry is a preliminary to mechanics, mechanics plays a role in the 
development of geometry as Isaac Newton explained in the Preface to the Principia. 

Geometry does not teach us to draw these lines (straight lines and circles), but requires 
them to be drawn, for it requires that the learner should first be taught to describe 
these accurately before he enters upon geometry, then it shows how by these 
operations problems may be solved. To describe right lines and circles are problems, 
but not geometrical problems. The solution of these problems is required from 
mechanics, and by geometry the use of them, when be solved, is shown.. . Therefore 
geometry is founded in mechanical practice, and is nothing but that part of universal 
mechanics which accurately proposes and demonstrates the art of measuring. 

Thus to the second point of the Euclidean corpus: the instrumental character of 
geometry is specified by the use of ruler and compass to solve problems of constructions; 
ruler and compass are both theoretical and practical instruments, both to define and to 
draw straight lines and circles. 

These two points of Euclidean geometry, the principle of equality by coincidence and 
the instrumental character, are close to the empirical origin of geometry. Thus, 
elementary geometry as it was developed by the Greek geometers and continued by their 
successors, is the model of a rational science built on empirical data, the first example of 
mathematical physics, that is to say, a means of knowing the world by the deductive 
method. The deductive method is less a logical problem (the technical side of 
mathematics) than a metaphysical (or theological) problem: to show the necessity of the 
truths of Science (Aristotle). That problem of necessity remains an ideal for mathematical 
physics today, even if the problem is less one of truth than one of internal coherence and 
of consistance with experiments, the idoneite to use a term from the Swiss philosopher of 
mathematics Ferdinand Gonseth, one of the greatest of our century. 

Another great problem that played a role in the development of geometry, is posed by 
the representation of space, that is to say, drawing a spatial object on a plane. This 
problem was studied by the painters and architects of the Italian Renaissance, and led 
towards the development of linear perspective and projective geometry. I shall add 
mention that the works from which modern projective geometry was created deal with a 
military problem, the building of fortifications; these works led towards the descriptive 
geometry of Gaspard Monge, at the end of the eighteenth century. Monge, who was a 
mathematician, understood the dual nature of descriptive geometry: a method of drawing 
and a method of study in rational geometry (Chasles. Monge). However 1 cannot speak 
about this in detail here and 1 refer you to the recent book by Roger Laurent and Jeanne 
Peiffer: La place de Lambert dans I'histoire de la perspective. 

To conclude this discussion about geometry, let me recall an important aspect of 
contemporary mathematics and physics: the geometrisation, which Dieudonne has 
called the universal domination of geometry. Geometrisation of which a first example is 
given in the arithmetical books of the Elements of Euclid, appears as a metaphoric 
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language for describing phenomena and for statements of concepts and theories. However 
beyond that, geometrisation allows us to develop a new kind of intuition, an intuition 
without which knowledge is incomplete and remains formal and meaningless. However 
this intuitive insight relies on the elementary geometry which makes it meaningful, and 
for this the empirical aspect of geometry is basic. 

4. A PHYSICAL MODELLING FOR MATHEMATICS 

If we can define a mathematical modelling for physics, that is to say, the use of 
mathematical constructions to study the real world by means of physical theories, let me 
recall also the use of physics to represent mathematical phenomena. I have already 
spoken about metaphoric language to describe mathematical concepts and theories, 
developing a new kind of intuition by the way of geometrisation; I can also speak about 
mechanical proofs such as those that Archimedes gave for the quadrature of a parabola, 
or the use of the centre of instantaneous rotation to draw the tangent to a curve. I refer 
also to a mechanical proof of the theorem of Poncelet on the tangent to an ellipse 
(Uspenkii): Another example is given by the following statement; let us consider a 
polyhedron and, for every face, the orthogonal projection of the centre of gravity onto 
the plane of this face. There is at least one face for which the orthogonal projection is 
inside. This is a consequence of the impossibility of perpetual motion (Llspenkii). 

Therefore, modelling is dual, mathematics towards physics and physics towards 
mathematics; this reinforces the unification (and not merely unity) of these two domains 
of science, showing that mathematics is a science, even a natural science, and not only a 
tool for science. 

5. TEACHING OF MATHEMATICS AND PHYSICS 

Nowadays it is true mathematics and physics are distinct. The formalisation of 
mathematics has removed it from its empirical origins, but it is precisely these empirical 
origins which allow us to use mathematics (formalised mathematics included) to study 
physical phenomena, unless we consider the agreement between formalised mathematics 
and physics to be a miracle (an algebraic proof of the existence of God). To understand 
the power of mathematics, it is necessary to relate mathematics to the problems from 
which mathematical concepts and theories were born, among which are physical 
problems. This should come out in teaching, not as a mere application of mathematics or 
use of formal procedures to solve problems, but. in accordance with actual scientific 
practice, by confronting learners with the questions around which contemporary 
sophisticated mathematics are budt. That is the reason why mathematics and physics have 
to be related in teaching: teachers of physics have to speak about mathematics and 
teachers of mathematics have to speak about physics: mathematics allows an under
standing of physics and physics allows an understanding of mathematics. However this 
does not mean that these two domains of science may be confused; confusing them leads 
either to reduce physical concepts to their statements and the solving of physical 
problems to formal procedures, or to reduce mathematics to a particular application 
(even if it is the most important'.) and to forget the autonomous development of 
mathematics which has allowed it to surpass its origins. This requires a thorough 


